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     The technology discussed in this paper demonstrates how a single converged control plane can benefit the U.S. government. It converges the 
capabilities of information assurance and policy with inter- and intra-domain routing and protection into a single control plane. Additionally, this 
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cations locally and/or remotely. This design is attractive to the U.S. government because of its ability to converge and centrally control various 
functions into one common control plane.
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EXPLOITING THE MULTI-SERVICE DOMAIN PROTECTING INTERFACE 
 
 
1 INTRODUCTION 
 

This report presents details of the work performed by the Naval Research Laboratory (NRL) to meet 
tasking obligations designated in MIPR M448514, Fast Encrypting Operational Networks High Speed 
Encryption Technology (FEON HSET). The goal of the FEON HSET program was to develop a high 
speed network encryptor. NRL was tasked to provide support to sponsor-designated partner laboratories 
in the areas of networks, systems, and applications research, and engineering and testing. This report 
focuses on the following work conducted. 

 
1. InfiniBand (IB) testing was performed between two systems. InfiniBand tools and systems were 

modified as required to successfully complete the IB testing. A high speed network infrastructure, the 
FEON HSET test bed, was put in place to support all testing between participants. Where this network 
infrastructure was not possible, test data was collected using the resources available at NRL. 

 
2. Experiments were conducted that show how to exploit the Multi-Service Domain Protecting 

Interface (MSDPI) architecture [1] to meet the tasking set in the MIPR. MSDPI is a new communications 
interface used by encryption devices and network devices as a routing engine or test tool suite allowing 
Department of Defense (DoD) and intelligence community (IC) networks to keep up with today’s rapid 
advances in technology and continuous changes in threats without requiring modification or 
recertification. For example, the experiments discussed in this report show how an encryption device 
exploiting the MSDPI control plane can support a variety of infrastructure types. Further, the KG 
encryption device prototypes discussed here prove the MSDPI can assure compliance with security policy 
while enabling a transparent data flow. This report focuses on MSDPI’s ability to re-engineer encryption 
devices, and touches on other DoD/IC requirements such as the development of a new communications 
test suite and the development of a new routing engine. This report discusses how the MSDPI can easily 
be exploited to support a wide variety of DoD/IC requirements. 

 
Below is an outline of the specific NRL tasking and related accomplishments for this FY11 project. 
 

Task 1: Install, baseline, and test network equipment provided by the sponsor. 
Status: None of the originally planned equipment was delivered, as of the writing of this report. 
 
Task 2: Baseline and test networks between NRL and the partners designated as test bed participants. 
Status: 

1. Four RHEL5.5 servers and four RHEL5.5 clients were installed in the FEON HSET test bed. 
2. Host IB interface connected to IB switches were integrated into the test bed. 
3. DDR and QDR initial testing was conducted through QDR Qlogic switch and DDR Longbow 

switches. 
4. QSFP cable compatibility issues were discovered, resolved, and reported. 
5. Two IB QDR switches were identified for the FEON effort: 

a. One QDR switch loaned from the Large Data JTCD was integrated into the test bed. 
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b. A second purchased QDR switch was integrated into the test bed. 
6. An OpenSIPS SIP server was integrated into the test bed. (SIP = Session Initiation Protocol.) 
7. The network management system (NMS) Zenoss was installed and configured, and reported 

network mapping and interface statistics. 
8. Testing was conducted: 

a. Initial OFED perftest suite of tests was conducted and statistics collected. 
b. MSDPI was integrated into the test bed and MSDPI performed point-to-point IB testing, 

which required performance baselining between QDR/DDR-capable hosts. 
9. Modifications were made to the MSDPI test suite: 

a. The point-to-point signaling test command was integrated. This command is the IB send 
server and client test sequence. 

b. MSDPI Test Master for the test sequence was integrated. This function of the MSDPI 
allows a tester to issue the test from a remote testing master to a targeted system. 

10. The FEON HSET RD&E/T&E test bed was integrated with ATDNet as a core test bed.  
 
Task 3: Develop, test, and incorporate the SIP Domain Discovery Service [2] and MSDPI architecture [1] 
into the MSDPI prototype where appropriate. 
Status: 

1. Prototype modifications to the MSDPI SIP Control Plane were completed, which addresses 
enhanced 10GE/40G IB tests. 

2. MSDPI was integrated into the Buildroot 2011 release of the Bay Microsystems operating 
system. 

3. Outstanding tasks were identified for configuring more of MSDPI into the FEON HSET test bed 
suite of tools and into the Large Data NMS. 

 
2 BACKGROUND 

 
Protecting the confidentiality of data from unwanted disclosure or access is a common requirement 

for government interests and nongovernment private and public interests. The integrity of the data — 
guaranteeing that it is the expected data — is also critical to data owners. Finally, assured service is also 
important: data owners want to be sure the data is available when needed. Common solutions used to 
provide confidentiality, integrity, and availability of user data make extensive use of cryptography. 
Typically, this refers to a method in which “plain text” data is made unusable by encrypting it, rendering 
it illegible to everyone except those parties who can convert the data back to its original, plain text form. 
Encrypting and decrypting the data is usually accomplished by using a variety of cryptographic 
techniques and devices. Further, the data is typically protected from unauthorized disclosure by 
segmenting it into private domains accessible only by known communities of interest. This is commonly 
accomplished through firewalling, which, simply defined, is a technique that separates protected data 
from unauthorized access by exercising rules applied to that access. Lastly, data availability is guaranteed 
by assuring that the systems that host, transport, and protect the data operate free from unwanted control. 
That is, only those who are assigned to manage the systems can control the systems. The technologies 
used to protect sensitive data undergo continual revitalization against a continuing and changing threat. 
This report details a new type of interface for encryption devices that protect networks and sensitive data. 
Further background can be found in Refs. 2 and 3. 

 
For government networks and private networks to operate securely, new ways must always be found 

to protect the data traversing the networks. Figure 1 illustrates a network configuration first demonstrated 
for the IC as early as 1995 [3]. The data’s sensitivity criteria are usually set by the data owner, which may 
be a government or a private entity. The common method for accessing data, government or private, is 
through some kind of network access. For example, private sector banking customers conduct remote 
private financial transactions through the World Wide Web. The typical bank customer is able to conduct 
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banking business over public networks because transactions are protected by various data-protecting 
technologies such as Transport Layer Security (TLS) and firewalling. 

 
 

 

 
 

Fig. 1 — Demonstration of an IC control and data plane 
 

 
 
However, governments require a higher degree of data protection and therefore make use of 

cryptographic systems called network encryption devices. Some leading network encryption devices used 
today are the Asynchronous Transfer Mode (ATM) network encryption device called the FASTLANE [3] 
and the newer Internet Protocol (IP) network encryption device called the High Assurance Internet 
Protocol Encryptor (HAIPE, or converted TACLANE).0F

1 Network encryption devices function as firewalls 
by segmenting local protected domains from public access, and exploit cryptography algorithms to protect 
user data during transport between protected domains. Today these devices also include network 
functionality based on the interfaced network. For example, the FASTLANE not only encrypts/decrypts 
user data passing through the device, it functions as a limited ATM network switch as well, supporting a 

                                                      
1 Another type of encryption device commonly used is the link encryption device. This technology is typically used 

in a point-to-point configuration. 
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typical suite of ATM network protocols. Even the new HAIPE network encryption devices include 
network protocols to include the IP and some of the routing protocols found in typical IP network routers.  

 
The process of developing a new network encryption device or even upgrading existing network 

encryption devices is generally a major undertaking. This is because historically, network encryption 
devices are an integration of the encryption engine and the network interface; therefore the entire device 
must be certified and accredited for every network interface even if only one component is modified. 
 
3 SCOPE 

 
It is not the intent of this report to detail every functional requirement of an encryption device. For 

example, device access control, cryptographic methods, or key management are not covered (it is 
assumed that existing methods will be employed). Only new traffic and policy management technology is 
demonstrated. The examples presented in this report are not all-encompassing designs but rather “proof of 
concept” experiments to explore the capabilities of the MSDPI. It is assumed that further research and 
development must be conducted to provide an operational deployable system. This report can serve as a 
guide for a final implementation of commercial products. 

 
4 EXISTING PROTECTION LIMITATIONS OF PROTECTED DATA 

 
Public networks such as the Internet have a less stringent requirement to protect user data than the 

U.S. government does.F

2 Public networks can therefore easily provide policy services such as Quality of 
Service (QoS). Public networks can integrate protection technologies that are not as constraining as those 
implemented by government organizations. However, U.S. government organizations such as the 
Department of Defense and the intelligence community are presented with the additional challenge of 
providing traffic policy while at the same time implementing restrictive protection technologies. 
Implementing policy can be a challenge because the exchange of information between the protected and 
the public domains is typically prohibited by the local information security policy and current techniques. 
Further, network encryption devices usually are designed to support a specific network to assure 
availability and performance. For example, the HAIPE can protect IP networks but is limited when used 
to protect a Frame Relay network. The FASTLANE ATM network encryption device functions well in an 
ATM network but cannot interface directly to an IP network.2F

3 Because these devices have one specific 
network interface, deployment changes and upgrade costs for these devices are generally high (even if the 
device can support multiple networks, it requires a hardware/software change). Operating these devices 
may require specific training, deployed architectures may require unique configurations, and logistics can 
be challenging. Thus, operating these devices becomes an art, as configurations become a balance of 
driving up protection mechanisms versus network functionality. All these issues promote constant 
changes with encryption technology. MSDPI reduces the number of required changes to the entire 
encryption device, helping to reduce costs and logistics. More important, with MSDPI, deployment 
schedules can be dramatically reduced because encryption devices can be molded to networks without the 
need to go through the entire operational approval process. 

 
  

                                                      
2 One can argue that financial organizations have as much concern for data protection as does the U.S. government. 

However, for the scope of this discussion, the concern for data protection is limited to national interests only, that 
is, protection of national secrets and human lives. 

3 This is not to say the FASTLANE cannot be used to protect an IP network or HAIPEs cannot protect an ATM 
network. As Ref. 3 points out, the KG-75A is perfectly capable of protecting IP networks. However, doing so 
requires exploiting the concept of the “Sandwich” architecture detailed in the reference. 
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5 THE MULTI-SERVICE DOMAIN PROTECTING INTERFACE 
 
One of the features of the Multi-Service Domain Protecting Interface demonstrated in this report is 

an encryption system that separates the cryptographic function (which must be certified through an 
expensive and time-consuming procedure) from the network interface function (which does not have to be 
certified unless it is embedded in the device). The MSDPI demonstrates a network encryption device that 
provides a seamless interface between the plain text domain (PTD) and cypher text domain (CTD) to 
ensure that policy is fully supported. The MSDPI defines a technology that functions as an interface 
between the network and the encryption engine, while still ensuring the two basic functions of a network 
encryption device separating plain text (PT) from cypher text (CT) through a certifiable encryption 
engine. The experiments reported here show how the MSDPI is multi-service by supporting both policy 
control and security. The experiments demonstrate how the MSDPI supports a broad range of data flow 
types and quality service contracts between peering domains and service provider domains while still 
maintaining security policy of the user. The MSDPI uses a configurable technique to determine the 
network structure and adapts to that technology at runtime. Simply put, MSDPI “wraps” the encryption 
engine with the network technology in use at the time. This wrapping function is transparent to both the 
encryption engine and the network. These experiments also touch on the MSDPI’s ability to adapt to 
multiple network technologies dynamically. For example, by using the additional service capabilities built 
into its architecture, the MSDPI simulated interfacing the encryption engine to an IP MultiProtocol Label 
Switch (MPLS) traffic flow, then switched to a virtual local area network (VLAN) traffic flow, an 
InfiniBand traffic flow, and an Ethernet network traffic flow. Each of these types of traffic has a unique 
characteristic that is exploited by the MSDPI to trigger the point in a traffic flow where the encryption 
engine cryptographic process begins. 

 
The MSDPI architecture has two components that are used to achieve its goal. First, MSDPI relies 

on pseudowire emulation (PWE) or similar technologies such as Layer 2 Virtual Private Network 
(L2VPN). 3F

4 This provides the wrapping function of the data flow. The second key to the MSDPI 
architecture is the Initiator-Responder function (I-R). 4F

5 I-R manages the data through the encryption 
engine and provides the control plane function. I-R communicates all control instructions to the 
encryption engine and network components. I-R communications is accomplished using the Session 
Initiation Protocol (SIP) for Instant Messaging and Presence Leveraging Extensions (SIMPLE). Further, 
I-R exploits SIP standard-based signaling, SIP authentication, and SIP policy and validation, securing 
communications between the I-Rs. By using the I-R design, the encryption engine actions, and therefore 
the data, are protected from compromise, disclosure, and denial of service. 

 
6 MSDPI SERVICE CAPABILITIES 

 
The SIP technology is used by the MSDPI architecture to improve control plane transport and 

control. The MSDPI design is able to enhance the mechanism for controlling the actions of the encryption 
device, the user data traversing a KG, exchange of router Routing Information Base (RIB) databases and 
test set parameters. This design strengthens security by allowing control messages between local domains, 
yet assures the separation of the local domain from the public domain while still assuring policy control 
between the local domain and the public domain.  

 

                                                      
4 The MSDPI can use any technology; the criterion is simply to traverse from one network edge to another using a 

known set header tag and information block size. 
5   The names Initiator and Responder come from existing network encryption device terminology denoting which 

network encryption device, taking on the role of the Initiator, begins the establishment of a security association 
while the other, playing the role of the Responder, listens for and responds to startup request. 
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Additionally, since the MSDPI architecture makes extensive use of SIP, the architecture inherits, by 
default, all the routing and security features of SIP to include authentication, authorization, encryption, 
and message traffic controls and types. The experiments discussed in this report solidify MSDPI’s 
enhanced capabilities for inter-domain peer establishment and maintainability of inter-domain 
communications through improved inter-domain control plane communications and improved cross-
domain policy synchronization.  
 
7 MSDPI USE OF MPLS 

 
Today, MPLS paths (commonly referred to as label-switched paths, or LSPs) is a popular virtual 

switching technology used by public network service providers and government agencies. LSPs provide 
two fundamental benefits, the separation of traffic flows based on policy and cost. For example, LSPs can 
provide a way to cost-effectively manage Voice Over IP (VoIP) traffic while also protecting the traffic 
from service denials. For the U.S. government, this technology provides a good solution for transitioning 
from circuit-based networks to converged IP networks. Further, it allows the government to segment 
traffic based on policy. Where public networks generally use segmentation for billing and service 
capabilities, U.S. government organizations such as the DoD and IC focus on segmentation for data 
protection and nondisclosure. MPLS fits well within DoD/IC deployments because of its ability to 
segment traffic flows while reducing the complexity of the technology needed to deploy IP infrastructure 
in much the same way as other virtual circuit-based technologies, such as ATM. Because of these 
benefits, MPLS is used here as a baseline for describing how the MSDPI architecture functions. Where 
required, other transport technologies are highlighted. However, MPLS is not a requirement for using the 
MSDPI within any device. 
 
8 MSDPI DESIGN 
 
8.1 Overview 

 
Figure 2 illustrates the two-plane architecture of a network encryption device based on MSDPI, that 

is, the control plane and the data plane. By dividing the device into the two planes, user data is protected 
from exposure, yet policy still can be applied to both the plain text domain and the cypher text domain. 
Further, since the user data path is established prior to the transmission of user data, there is minimal 
impact on traffic performance by the control plane. This design exploits two prior technologies detailed in 
Refs. 1 and 2. The MSDPI architecture is not limited to just the encrypting component but includes all 
components that provide an interface between the encryption component and the surrounding networks or 
hosts. Further, this architecture includes any networking component that will provide needed functions for 
transporting traffic through the encrypting component, as depicted in Fig. 3. The MSDPI interface may 
exist within a single unit or consist of many integrated units. The core components of the MSDPI are the 
control plane, data transport input/output (I/O), traffic security flow component, and encryption engine. 
Additional network components such as MPLS, Ethernet, VLAN, or InfiniBand protocol handling 
components may or may not reside within the core unit. For example, the MPLS to IP transport mapping 
function may reside in a typical ISP router and is sometimes referred to as an MPLS label switch router 
(LSR) with the added MSDPI function within it. Figure 4 illustrates how a network with MSDPI network 
encryption devices would be engineered. 
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Fig. 2 — MSDPI control plane and data plane 
 
 
 

 
 

Fig. 3 — MSDPI detailed architecture 
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Fig. 4 — MSDPI network interface examples 
 
 
 
8.2 SIP Control Plane Design Features 

 
The control plane components experimented with and reported here were introduced in Ref. 1. That 

publication details how the MSDPI control plane, by exploiting existing SIP technology, specifically 
SIMPLE technology, was constructed to control various types of traffic flow such as IP traffic. A key 
component in the interface is the Initiator-Responder. In the MSDPI encryption device architecture, it is 
used to manage the PTD and CTD data and I/O components and the encryption engine. The boundaries of 
the network encryption device discussed in this architecture are divided into two specific areas. One 
boundary is set between the PTD and CTD as denoted at the point which user data is encrypted and 
decrypted. The second boundary is between the Local Domain Control (LDC) and Public Domain Control 
(PDC) and is the point at which local administration ends and traffic is controlled by another 
administrative domain — for example, the handoff of a traffic flow between a local network and a service 
provider network. As would be expected, LDC consists of all the functions managed by the local domain 
authority and interfaces to any other private or public infrastructure. The PDC is anything managed by a 
public network or outside the administrative control of the LDC. Another key distinction with a protected 
LDC is that the LDC never transports LDC data and/or control information to the public network in an 
unencrypted format (“in the clear”).  

 
8.3 Network Interface 

 
A feature of the MSDPI network encryption device architecture is the ability to interface to any 

network infrastructure type, either locally administered or service provided. Figure 4 illustrates some 
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typical networks this network encryption device will interface to or bridge. The ability to interface to 
multiple network types is possible because this network encryption device exploits the “Sandwich” 
technology detailed in Ref. 3 and illustrated in Fig. 1. As Fig. 4 shows, one difference between the 
configurations is the use of a label edge router (LER). An LER is a network component device that 
generates or terminates a label switch path; typically it creates a label and prepends or extracts a label 
from a transport flow. An LER is required when the MLS network encryption device is interfaced to a 
non-MPLS network, thus the network encryption device is the LSP terminating device for the CTD 
network. If the network encryption device is to function as a label switch router (LSR), it will interface to 
MPLS networks through both of its domain interfaces and simply switch labels between the PTD and 
CTD networks. This is not the case where the network encryption device interfaces to a non-MPLS CTD 
network, such as an IP backbone network. In this case, the IP backbone interface will simply map the 
MPLS network encryption device label into the transport mechanism employed. For example, the 
network encryption device’s label would be mapped to an IPSec tunnel across the backbone. Typically, 
this may involve simply establishing an interface route from the MPLS network encryption device egress 
port to the IPSec tunnel ingress port. 

 
8.4 Modular Design Features 

 
Another feature of the MSDPI architecture is the modularity of each component. This is made 

possible because of the I-R design using SIP MESSAGE methods for control plane communications 
between components. Because each process is controlled by the I-R, the network ingress/egress can be 
segmented out of the encryption engine (EE). For example, a high-speed router could perform the virtual 
routing and forwarding (VRF) queuing function and for that matter data input/output function, separating 
these processes from the encryption process into separate network systems. Synchronizing control 
functions and controlled traffic flows in this type of architecture is accomplished by the SIP control plane 
messages. However, the VRF, data I/O, and encrypting engine could very well be housed within a single 
hardware component. The advantage of a single component is that only one SIP control plane process is 
required for performing all the control plane processing. The disadvantage is that the encryption engine 
and network components are integrated into a single hardware component, which will increase 
development and deployment requirements and possibly require added and/or tuned hardware to meet 
performance requirements. 

 
8.5 SIP MESSAGE Dialog 
 
8.5.1 SIP MESSAGE Subject Field 

 
The SIP dialog used between the I-R processes is exactly as defined in Ref. 2. As in Ref. 2, the 

architecture experimented with in the present report exploits the SIMPLE MESSAGE method technology 
defined in RFC 3438 [4] and therefore has all the SIP functions and controls. The primary SIP SIMPLE 
MESSAGE method used is the MESSAGE request. The MESSAGE request requires the subject to be a 
question or answer. The format of the question subject must begin with the key word “Question” and the 
answer subject line must begin with the key word “Answer.” Each of these subject line key words must 
be followed by a message type and code such that a subject line format is: Question:[type]:[code] or 
Answer:[type]:[code]. Each of the keys words must be separated by a “:”. Spaces are ignored. The “type” 
key word designates the message type. For example, in Fig. 5 the type key word is “PTDNMSIR” and 
designates that the message contains Plain Text Domain Network Management System Initiator-
Responder (PTD NMS I-R) query-response information. The code key word is a four-character number to 
further signify the message function. Thus, in Fig. 5, the message is a query message, “Question,” for the 
Plain Text Domain Network Management System Initiator-Responder daemon, given the tag 
“PTDNMSIR” with the additional command, code “0005,” which may designate that the query message 
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contains a Presence Information Data Format (PIDF) (see Section 8.5.3) with label processing 
instructions.  

 
 
 

 
 

Fig. 5 — Example of an I-R MESSAGE dialog message 
 
 
 
8.5.2 SIP MESSAGE Address Field 

 
One of the power features of the MSDPI is the exploitation of the SIP Uniform Resource Identifier 

(URI). The typical format of the URI is the form: <scheme name> : <hierarchical part> [ ? <query> ] [ # 
<fragment> ] (see RFC 3986 [5]). For MSDPI, the <scheme name> is always “sip”. The <hierarchical 
part> portion of the URI is typically, but does not have to be, in the format “<user@>address:port”. Note 
the field “<user@>” is optional, thus may be omitted. Most of the prototype MSDPI implementations do 
not require this sub-field. For example, when the MSDPI SIP PTD Discovery Service device is 
exchanging PTD data, it addresses the data to the target system with the URI in the IP format 
“sip:<IP>:<port>” or specifically “sip:10.10.10.10:9999”. Since the address field is subjective, this field 
may be an Ethernet MAC address, such as “sip:0a120b340d:9999”. It may use an InfiniBand address, 
such as “sip:0x0002c9030000a60c:9999”. Or it may simply be an MPLS label, such as “sip:0001:9999”. 
Therefore, the MSDPI URI format used is dictated by how the MSDPI URI is interfaced to the supporting 
communications infrastructure. 

 
8.5.3 SIP MESSAGE PIDF Format 

 
As in Ref. 1, the MSDPI architecture discussed in the present report exploits the concept described 

in the SIP SIMPLE standard and the use of the Presence Information Data Format to exchange SIP 
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MESSAGE documents.6 These PIDF documents contain the control plane messages passed between the 
MSDPI I-Rs. The generic format of the PIDF used within this architecture is illustrated in Fig. 6. As in 
the SIP SIMPLE PIDF specifications and in Ref. 1, it is suggested that in the MSDPI architecture, the 
format of the message document be based on the Extensible Markup Language (XML) PIDF format 
standard. However, if the XML format is used, all tags must start with “<” and end with “>” and a tagged 
command must be terminated. For example, if a key word is shown as “<TAG>”, then the terminating 
sequence for this tag must be “</TAG>”. Within the basic PIDF of this architecture the first key word is 
“<network encryption device>” which identifies the network encryption device. By identifying the 
network encryption device in the PIDF, the I-R process can be hosted locally and remotely and adds 
further accountability to the message. Further, this identifier allows one network encryption device to 
proxy message traffic for another possibly because of policy or access restrictions. The next important tag 
is “<label>” which is used to signal a payload to the EE. Included in the PIDF is the “<payloadlength>” 
tag which also is important information for the EE, letting the EE know where a payload terminates. The 
“<ttl>” identifier allows a time constraint on the attached commands. This prevents lost commands, 
which have been recovered, from overwriting retransmitted commands. Since the PIDF may hold more 
than one Initiator-Responder daemon query-respond request, the requests are segmented by the tag 
“<initiatorresponder>” and each daemon is segmented by the “<identifier>” tag. Figure 6 and Table 1 
provide the other default tags found in the MESSAGE request and the function the tag performs. The 
implementer is free to expand on any of the tags and tag values to best reflect the infrastructure 
requirements being addressed. The “<checksum>” tag is used to assure message integrity. It is not within 
the scope of this specification to determine this value; the value used is an implementation concern. 

 
 
 

 
 

Fig. 6 — Basic I-R PIDF control MESSAGE 
 
 
  

                                                      
6 To get an understanding of how the I-R uses the PIDF, see Ref. 1. The format between the Initiator and the 

Responder is governed by the specific configuration using the PIDF. 
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Table 1 — PIDF Tag Definitions 

 

TAG FUNCTION 

network encryption 
device 

Target network encryption device address 

network encryption 
device_ttl 

PIDF time to live, when expired PIDF is ignored 

database New database follows 

initiatorresponder New Initiator-Responder control plane section 

identifier Identifies the specific Initiator-Responder 

label Label identifier, signals a bounded traffic flow to the EE  

labellength Length of the label 

payloadlength Length of the payload, this is required by the EE 

type Identifies the label as source, destination, unidirectional, bidirectional 

action How the Initiator-Responder is to process labels 

status Initiator-Responder status 

POC name/phone ISSO contact information 

checksum Checksum or user authentication mechanism 

 
 
 
 
9 MSDPI ARCHITECTURE 
 
9.1 Component Definitions 

 
To help clarify the discussion, we define some additional MSDPI component names shown in Fig. 3. 

The Initiator-Responder used to control message traffic within the local domain control is called the Plain 
Text Domain (PTD) Network Management System (NMS) and is referred to as the PTD NMS I-R. The I-
R that controls the local domain side Label Data I/O is referred to as the PTD I-R. The I-R controlling the 
encryption engine is the EE I-R. The CTD Label Data I/O I-R is called the CTD I-R. CTD traffic 
management and flow is managed and controlled by the CTD NMS I-R. Each of these components is 
further defined in Section 9.5, Component Description. 

 
9.2 Control Messages 

 
As discussed above, all control message traffic between the I-Rs employs SIP SIMPLE MESSAGE 

methods. For example, when the PTD NMS I-R is ready to notify the EE I-R that a new traffic flow is to 
begin, it will build a PIDF document containing the appropriate control information needed by the EE to 
begin encrypting or decrypting a traffic flow. Figure 7 is an example of a possible PTD NMS I-R SIP 
SIMPLE MESSAGE PIDF. Table 2 provides a minimum set of PIDF message types and control codes 
used by the I-R. 
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Fig. 7 — Example of PTD NMS I-R control message 
 
 
 

Table 2 — Minimum Set of PTD I-R Type Codes 
 

Message Type Control Code Function 

PTDNMSIR 0001 PIDF with multiple policy options 

PTDIR 0001 PIDF with multiple policy options 

EEIR 0001 PIDF with multiple policy options 

CTDIR 0001 PIDF with multiple policy options 

CTDNMSIR 0001 PIDF with multiple policy options 

 
 
 
9.3 Managing Policy Between MSDPI Interfaces 

 
The MSDPI adheres to the concepts developed in Ref. 1 for managing policy. Typical policy 

agreements might be access controls, authorizations, or QoS. All PIDF exchanges remain within the LDC 
and peering MSDPIs. Each LDC PTD NMS I-R is responsible for negotiating policy between peering 
MSDPIs. This includes any change in policy within the LDC that requires a renegotiation between 
MSDPIs. Figure 8 illustrates this negotiation sequence. Through this design the control plane between 
MSDPIs is secure. That is, to protect the exposure of PTD policy information from the public domain, 
only peering MSDPI PTD NMS I-Rs or peering MSDPI CTD NMS I-Rs exchange policy information. 
Fig. 9 illustrates the architecture of peering MSDPI policy dialog. Specifically, no information is 
exchanged between the LDC PTD NMS I-R and LDC CTD NMS I-R or LDC PTD NMS I-R and a peer 
MSDPI CTD NMS I-R. As Fig. 2 and Fig. 9 illustrate, there is no connection between the PTD NMS I-R 
and the CTD NMS I-R. The assurance of policy between the PTD and CTD is by mapped (configured) 
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assignment. To illustrate this, the link between PTD MSDPI to peering PTD MSDPI may be divided into 
several dissimilar policy (such as QoS) transport paths. These transport paths are then mapped (either 
manually copied or dynamically initialized) to similar CTD MSDPI transport paths. For example, the 
PTD may have three transport flows with QoS policy assignments of low-priority, best-effort, and 
guaranteed 9F

7 services. To protect the disclosure of the type of policy assigned to any specific path, network 
engineers typically then assign a common policy to all the paths between the CTDs (the PDC). For 
instance, all the CTD paths will be given a guaranteed rate policy. Thus the traffic flow control is 
established, controlled, and conducted within the protected LDC. The implementation of the mapping is 
left up to the information security policy administrator. Fig. 10 is an example of the PIDF XML formatted 
message to control traffic paths and traffic control for a particular path between peering MSDPI PTD 
NMS I-Rs or CTD NMS I-Rs. 

 
The most difficult challenge for DoD/IC networks is integrating an encryption device into a network 

while still maintaining policy control. Typically, plain text domains have no easy method to set local 
policy across or within cypher text domains. Therefore, the usual practice is to separate the PTD and CTD 
control planes as previously stated. However, the MSDPI does provide a secure method of exchanging 
policy across dissimilar domains. As illustrated in Fig. 11, policy can be accomplished through the strictly 
controlled MSPDI protocol. Typically called a “one-way-transfer,” MSDPI is suited for this type of 
configuration because its signaling protocol is specifically formatted, yet the contents can be dynamically 
set to specific communications needs. 

 
 
 

 
 

Fig. 8 — PTD NMS I-R to PTD NMS I-R policy negotiation 
 
 
 

                                                      
7 See RFC 1349 [6] for information on QoS within IP networks. 
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Fig. 9 — Example of peering LDC PTD NMS I-R policy flow 
 

 
 

Fig. 10 — Example of LDC PTD NMS I-R to peer LDC PTD NMS I-R PIDF 
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Fig. 11 — MSDPI policy CONOPS 
 
 
 
9.4 Encryption Device Peer Discovery 

 
Encryption device peer discovery can be accomplished by either manually setting peer information 

or by using an automated mechanism. Typically, manual discovery is the simple process in which one 
network encryption device is statically initialized via a file or database with peer network encryption 
device security association (SA) information. Automated peer discovery can be accomplished through 
protocol management and exchange mechanisms. The dynamic peer discovery mechanism that must be 
used in this design is specified in Refs. 1 and 2. 

 
9.5 Component Description 

 
This section describes each MSDPI I-R daemon and the function it performs. 
 

9.5.1 LDC PTD Network Management System MSDPI Initiator-Responder 
 
The LDC PTD Network Management System MSDPI Initiator-Responder (PTD NMS MSDPI I-R) 

is possibly the most important component of this architecture. This is because it controls the actions of the 
virtual routing and forwarding buffers (VRFBs, see Section 11 and Fig. 3), the PTD I-R, and indirectly 
through the PTD I-R, the PTD Label Data I/O, the EE I-R, the EE, and the CTD I-R and CTD Label Data 
I/O. Further, the LDC PTD NMS I-R will negotiate policy with peering LDC PTD NMS I-Rs. Figure 3 
illustrates the connection architecture between each of the I-R daemons showing how the LDC PTD NMS 
I-R, as the master daemon, controls all other I-R daemons within the LDC. Figure 12 illustrates the policy 
negotiation sequence that takes place within the MSDPI. Figure 13 illustrates how the PTD NMS I-R 
controls the other I-R and processing units (Label Data I/O or EE) either directly or by issuing and 
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responding to negotiation requests from the other component controlling I-Rs. In other words, when a 
policy action is required to be executed by the MSDPI, the policy action begins from the LDC PTD NMS 
I-R which directs the policy action to the LDC PTD I-R. The LDC PTD I-R, in turn, instructs the LDC 
CTD I-R, which relays that action to its Data I/O component. After the PTD I-R receives the appropriate 
SIP OK reply, it relays the action request to the LDC EE I-R which, in turn, relays the action to the EE. 
Finally the LDC PTD I-R passes the policy action to its Label Data I/O and signals the LDC PTD NMS I-
R the policy has been established within all the MSDPI I-R daemons. The reason the LDC PTD NMS I-R 
first issues the requested action to the LDC CTD I-R is to assure the network ingress interface, the CTD 
Label Data I/O, can handle the policy request. In this way an acceptable policy can be relayed by the 
MSDPI to the LDC network.  

 
 
 

 
 

Fig. 12 — Initiator-Responder policy negotiation sequence 
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Fig. 13 — LDC I-R command flow 
 
 
 
9.5.2 LDC PTD Initiator-Responder 

 
The LDC PTD Initiator-Responder (PTD I-R) controls the actions of the LDC PTD Label Data I/O 

and the LDC CTD I-R. It issues control commands to the CTD I-R using an I-R MESSAGE PIDF. To 
provide status and notification feedback, the CTD I-R also uses the MESSAGE PIDF. A typical control 
key word used in this PIDF is the queuing method employed by the implementer. For example, the 
queuing method could be Random Early Detection (RED)10F

8 or even a simple first-in/first-out (FIFO) 
buffer. SIP MESSAGE control is conveyed from the PTD NMS I-R to the PTD and indirectly to the CTD 
I-Rs containing the PIDF message illustrated in Fig. 7 and Fig. 9. To assure the PTD Data I/O and the 
CTD Data I/O queuing mechanisms are synchronized, when the PTD I-R receives the PIDF control 
message, it issues, as illustrated in Fig. 12, the control message to the CTD I-R. Note the LDC PTD Data 
I/O will not be signaled with a request until the CTD I/R receives an OK reply from the CTD Label Data 
I/O to proceed. An example of a proceed message is the “Answer” type code “OK” as illustrated in Fig. 
13. This sequence allows the LDC PTD I-R and CTD I-R to negotiate an agreeable policy to assure the 
LDC PTD request will not overrun the capacity of the MSDPI ingress into the backbone network. Once 
the MSDPI egress buffer (ingress buffer to the PDC network) control policy is established and the CTD 
signals the LDC PTD I-R with the “Answer” type code “OK”, the LDC PTD I-R then issues the 
negotiated command request to its Label Data I/O. When the PTD I-R’s Label Data I/O signals success of 
this action back to the LDC PTD I-R, the PTD I-R can relay this success back to the LDC PTD NMS I-R. 
If a successfully policy negotiation between any of the I-Rs cannot be established, resulting in termination 
of the request, a negotiation failure is reported back to the LDC PTD NMS I-R. This results in the original 
policy request termination, and the traffic path is not established. At this point the LDC must begin the 
policy action again. Figure 14 illustrates this sequence of change policy events. 

 

                                                      
8 Random Early Detection is a congestion control mechanism used to control traffic. There are many such 

mechanisms. The only concern this design has is providing a mechanism to convey the congestion control 
mechanism between MSDPI peers. 
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The PTD (or CTD) I-R controls the action of the Label Data I/O either through the same mechanism 
just described between the PTD I-R and CTD I-R using the PIDF or through an implementer design. This 
is because the control of the Label Data I/O is inherently a hardware function typically calling for 
hardware commands being issued and hardware status queries being processed by the PTD (or CTD) I-R. 
Again, it should be pointed out, there is nothing stopping the implementer from continually using the 
PIDF command/request scheme so far discussed as the mechanism used between the PTD I-R and the 
Label Data I/O MSDPI component. 

 
 
 

 
 

Fig. 14 — LDC I-R policy status/negotiation 
 
 
 
9.5.3 MSDPI Encryption Engine Initiator-Responder 

 
The Encryption Engine Initiator-Responder controls the actions of the encryption engine. For 

example, but not necessarily an approved operational control action, the EE I-R may be instructed by the 
PTD I-R to begin using a specific key management mechanism. Through the dialog between the PTD I-R 
and the EE I-R as directed by the PTD NMS I-R, the EE will detect and begin the process of 
cryptographically processing the data traffic. To control flows, the EE will signal the PTD I-R that it is 
ready to accept traffic and then begin scanning input flows for label information. 

 
9.5.4 MSDPI CTD Initiator-Responder 

 
The CTD Initiator-Responder controls the action of the CTD Label Data I/O. It issues control 

commands to the Label Data I/O using an I-R MESSAGE PIDF message or any mechanism developed by 
the system implementer. To provide status and notification feedback, the Label Data I/O also uses the 
MESSAGE PIDF or the mechanism associated to the hardware. To improve security, the CTD I-R has no 
direct interface to the cypher text domain (PDC); it will not accept any control signaling from the CTD 
and is only accessible from the PTD and is controlled by the PTD I-R. Figure 3 illustrates this, showing 
the out-of-band control command arrow going from the PTD I-R to the CTD I-R. Having the PTD I-R 
issue SIP MESSAGEs to the CTD I-R, which in turns conveys those SIP MESSAGEs to the CTD Label 
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Data I/O, assures the PTD Data I/O and the CTD Data I/O are synchronized. When a situation warrants 
that the receiving MSDPI must change the actions of the sending MSDPI, the receiving MSDPI CTD I-R 
issues a renegotiation request via its PTD NMS I-R to the sending PTD NMS I-R. This change request is 
sent through the secure control path illustrated in Fig. 3 to the peering PTD NMS I-R. Typically the 
change will request an adjustment be made to the transmitting VRFBs and/or sending Label Data I/O 
queues. To signal this request, for example, the CTD I-R builds a MESSAGE PIDF with the key words 
<action> set to “change” and possibly set the key word <QoS_offer> to some acceptable transmission 
rate or the key word <queuing> to an acceptable queuing mechanism. This changed policy is then relayed 
to the peering MSDPI. 

 
9.5.5 CTD Network Management System Initiator-Responder 

 
To provide information assurance (IA), the CTD Network Management System Initiator-Responder 

is only accessible locally or through an existing security association between managed peering CTD NMS 
I-Rs. Therefore, peering CTD NMS I-Rs will operate using approved access control and interfaces. For 
example, peering CTD NMSs will use encrypted authenticated control channels to exchange control 
information. Figure 3 illustrates this configuration with the out-of-band arrow which connects the CTD 
NMS I-R to the “Secure VPN” channel. The primary function of the CTD NMS I-R is to manage the 
LDC CTD virtual routing and forwarding buffer of the MSDPI.  

 
10 CONTROL PLANE 

 
This discussion further details MSDPI control plane messages, components, and control plane 

protection scheme functionality. Control message traffic and the management of data traffic are reviewed. 
Further, the discussion details a key component, the MSDPI label, explaining what it is and how it is 
used. This section provides some details on typical PIDF control messages used between the I-Rs, and the 
responses for those PIDF messages. Additionally, it describes the scheme used to protect control plane 
paths. 

 
10.1 Label 

 
To understand how the MSDPI controls traffic flows, the reader needs to understand how the 

MSDPI uses the protocol header of the traffic traversing the interface. Much like any encryption 
architecture, the MSDPI takes a flow in from the LDC PTD and directs the EE subsystem to encrypt the 
flow payload, then forwards the flow to the public network, the PDC CTD. Since the EE can be a 
standalone component to the entire MSDPI system, the MSDPI needs to bound I/O flows so it can control 
those flows. It does this by binding the flow to a “label.” The MSDPI architecture defines a label as any 
header information within a traffic flow used to denote the established beginning of a traffic flow. The 
MSDPI binds the ending of a flow by extracting out the length field of the original header. For example, 
an MPLS traffic flow will have the packet length extracted from the IP header. This value, adjusted to 
reflect the MPLS header and MSDI label length, is reported to the EE as the length of the MSDPI labeled 
flow. The final total length value is inserted into the I-R PIDF tag field <payloadlength>. The 
implementer is free to develop a manual mechanism for creating the MSDPI label. For example, a 
database of labels could be used; for traffic flows into the MSDPI, the interface draws labels when needed 
from that database on a per flow basis. Again, to assure peering MSDPIs are synchronized, the MSDPI 
assigned as the session Initiator would be required to inform a peering Responder about any labels. Figure 
15 illustrates the point where the MPLS header is designated as the MSDPI label thus establishing the 
beginning of a flow and the point in which the EE is to begin encrypting or decrypting the traffic data. 
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Fig. 15 — MSDPI label encryption 
 
 
 

There are other examples of how the traffic header can be transformed into an MSDPI label. The 
mechanism used can be left up to the implementer. What is important is the label must be consistent 
between MSDPI peers and operate between different implementations of the MSDPI. Besides MPLS, the 
Ethernet MAC destination and/or source address (IEEE 802.3), the VLAN tag (IEEE 802.1Q), the 
InfiniBand Layer 2 local routing header (LRH), and the InfiniBand Layer 3 global routing header (GRH) 
can be used as an MSDPI label. For example, Fig. 16 and Fig. 17 illustrate, respectively, how the 802.1Q 
tag and the InifiniBand LRH can be prefixed to the payload traversing the MSDPI so it can be presented 
to the EE as an MSDPI labeled traffic flow. 

 
 
 

 
 

Fig. 16 — 802.1Q MSDPI label 
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Fig. 17 — InfiniBand to MSDPI label mapping 
 
 
 
10.2 Control Channels 

 
The MSDPI can have three types of control channels, an in-band and/or out-of-band control channel. 

The in-band channel is a transport path established within the same transport path used by the data traffic. 
Typically the in-band path is segmented into separate paths, one for control traffic and one for data traffic. 
The segmentation can be, but is not required to be, a separate VPN path between peering MSDPIs. Out-
of-band channels are those channels that have physically separate transport paths from the data transport. 
In either case, the transport path is protected by approved transport security mechanisms such as a prior 
established protected transport tunnel.11F

9 It is over these control channels the MSDPI exchanges PIDF 
SIMPLE MESSAGEs. 

 
  

                                                      
9 The protection of the in-band or out-of-band control channel is out of the scope of this design. It is assumed that 

approved mechanisms are used to protect control channels. For example, the out-of-band path may be a prior 
established SSL VPN. 
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10.3 Example I-R PIDF Messages 
 
As previously stated, the MSDPI exchanges control signaling through the use of a PIDF. The PIDF 

contains control signals to manage the various subsystems of the network encryption device. For example, 
the PTD NMS I-R will send a SIP message containing the PIDF illustrated in Fig. 18 or Fig. 19 to signal 
the beginning of a traffic flow. This PIDF will contain information such as the length of the label, thus 
providing to the EE the point within the traffic to begin encrypting or decrypting a flow. The following 
PIDFs are examples of the various control messages. Again, the implementer is free to define what is 
contained in the PIDF as long as it is an XML format as specified within this design and the format is 
synchronized between all MSDPIs. In fact, the format can be defined at runtime by a site Information 
Systems Security Officer (ISSO), providing additional security. The only constraint on the ISSO is that 
the format must also include basic tags so the PIDF format does not impede the basic functionality of the 
implemented network encryption device. 
 
 
 

 
 

Fig. 18 — Example of PTD NMS I-R to PTD I-R PIDF 
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Fig. 19 — Example of PTD NMS I-R to VRFB PIDF 
 
 
10.4 Securing the Control Plane 

 
This MSDPI design secures the control plane by permitting write and read control signaling between 

the LDC PTD NMS I-R and the PTD I-R, the PTD I-R and the Label Data I/O, and the PTD I-R and the 
EE I-R, but permits only write control signals from the LDC PTD I-R to the LDC CTD I-R. These write 
signals contain only MSDPI information validated by the PTD NMS I-R to manage the LDC CTD I-R 
Label Data I/O. LDC CTD I-R status information is the only information sent to the PTD I-R which 
allows policy negotiations. Further, no signaling is allowed from the PTD to the CTD other than control 
signaling over a protected channel between peering MSDPI LDC PTD NMS I-Rs. By exploiting the 
technology commonly referred to as the “Sandwich,” detailed in Ref. 2, controlled synchronization of 
policy between the LDC PTD and the PDC CTD can be accomplished. As in the Sandwich, the MSDPI 
statically maps control signal behavior of the PTD to the CTD, effectively mirroring, if appropriate, the 
PTD policy within the CTD. However, it is not required that the CTD exactly mirror the PTD. In fact, the 
ISSO may determine it necessary to configure the CTD differently from the PTD. The only restriction to 
implementing the Sandwich is that peering MSDPIs must be configured with equal policy to include the 
mapping behavior between the LDC and PDC and the mapping between peering MSDPIs. 

 
To further secure the MSDPI control plane, local interfaces exploit an approved transport security 

mechanism. For example, and not necessarily the mechanism to use, the transport security mechanism 
used between the PTD NMS I-R and the PTD I-R may be IPSec or TLS. The security method deployed is 
a matter for the ISO and system accrediting authority. This flexibility to integrate transport security 
between I-Rs is an additional benefit the MSDPI provides to operational security. 
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11 DATA PLANE 
 

11.1 Data Flow 
 
The flow of data traffic, as illustrated in Fig. 2 and Fig. 3, flows from the PTD via an MPLS LSP 

into the MSDPI VRFBs, then through the PTD Label Data I/O, through the Label Traffic Flow Security 
Insert/Extraction (I/E)12F

10 to the EE. Then, from the EE, encrypted data flows to the CTD Label Data I/O 
and finally through the CTD VRFB for controlled injection into the public network. Data traffic from the 
public network follows the reverse path. It should be noted, the CTD VRFB inbound traffic is typically 
treated as a simple priority queue if all the buffers have a common policy setting. As stated above, the 
“Sandwich” architecture relies on the LDC PTD VRFB, and not the LDC CTD VRFB, to control traffic 
congestion between MSDPIs. 

 
11.2 PTD/CTD MSDPI Virtual Routing and Forwarding Buffers 

 
The MSDPI control of data traffic flows consists of two basic functions in both the PTD and CTD: 

the control of the data traffic and the data traffic. To control PTD traffic flow, the MSDPI uses the 
concept of VRFBs as discussed in Ref. 2. The MSDPI VRFBs function similar to how L3VPN 13F

11 service 
uses VRFs. That is, for L3VPNs, VRFs are used for routing; in the MSDPI case, a policy is assigned to a 
specific VRFB. Therefore, traffic flowing through the MSDPI is controlled by the VRFB policy 
assignments. Typically, the PTD VRFBs will have a policy assigned to a PTD MPLS LSP that is 
originating from the PTD. Also, each CTD VRFB will be assigned to a CTD MPLS LSP. Then by 
mapping a PTD label to a specific policy and associating the label to a CTD LSP, traffic flows between 
MSDPIs can be controlled. This mapping may be accomplished by port-to-label, queue-to-label, or even 
an implementer-specific mechanism. The method used is up to the implementer of the MSDPI. For 
example, early implementers of the MPLS draft-Martini standard often mapped VCI/VPIs to an MPLS 
LSP configured physical port. Thus any ATM traffic directed to leave via the port was wrapped into a 
preassigned MPLS labeled IP packet, effectively mapping the VCI/PCI to a label, ergo a label switch 
path. 

 
11.3 PTD/CTD Label Data I/O 

 
The PTD and CTD Data I/Os are the interface buffers which accept and transmit data traffic through 

the encryption engine. The type of buffer queuing used is left up to the implementer. At a minimum, it is 
assumed that a simple FIFO priority queuing mechanism will be deployed. The primary function of the 
Label Data I/O is to manage congestion of data through the EE. The queuing mechanism used is not 
within the scope of this specification and is left up to the implementer.  

 
  

                                                      
10 System administrators can determine if the Label Traffic Flow Security I/E needs to be activated in an MSDPI 

device. It is included here to show where it sits within the data traffic flow through the MSDPI and how it 
functions as a traffic flow concealing function. 

11 L3VPN, Layer 3 Virtual Private Network, is defined in RFC 2547bis [7]. 
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12 HARDWARE COMPONENTS 
 

12.1 How an MSDPI FPGA Device Functions 
 
Figure 20 illustrates a typical MSDPI programmed into hardware using any commodity field 

programmable gate array (FPGA) device. For this example, the SIP PTD Discovery Device is used again. 
Note that the PTD MSDPI communicates with the CTD MSDPI through the SIP MESSAGE PIDF. Using 
the Q-A dialog, the MSDPIs peer and determine which data streams will be tagged and forwarded. 
 
 
 

 
 

Fig. 20 — MSDPI programmed into hardware 
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12.2 How an MSDPI FPGA InfiniBand Device Functions 
 
Figure 21 illustrates how the MSDPI FPGA device can be built as an MSDPI-based InfiniBand 

switch. Since this is an InfiniBand switch, the RIB contains IB LRH and GRH addresses. Note also that 
the label assignments use the LRH and GRH. 

 
 
 

 
 

Fig. 21 — MSDPI InfiniBand switch 
 
 

 
13 MSDPI CONCEPT OF OPERATIONS 

 
Figure 22 illustrates a typical MSDPI peer-to-peer (P2P) operation and Fig. 23 illustrates a client-to-

server operation. Here the reader can see that the concept of operation is exactly like that within a typical 
SIP session setup with the exchange of SIP “invite” query messages, “ringing” wait messages, and “200 
OK” response messages. Part of this setup is the exchange of the PIDF which contains the session’s 
policy information. Once the SIP dialog completes its process, user traffic can begin flowing in 
accordance with the established policy parameters. 

 
Like any P2P, the MSDPI assumes that P2P configurations are primarily used within local networks. 

To scale the network, a tiered client-server configuration is suggested, as illustrated in Fig. 23. Therefore, 
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the SIP dialog between servers is exactly as the dialog between a local client and its local server. When a 
client requests a session with a peer not within its local server, the server sends invites to its peering 
servers. 

 
In the client-server configuration illustrated in Fig. 23, a local OpenSIPS server is used to host the 

various MSDPI clients. Clients register with the MSDPI server using the standard SIP protocol. Then 
each provides to the server any policy information that pertains to its system’s running configuration 
through the MSDPI protocol. Through the MSDPI protocol, client-server and P2P clients are updated 
with peer policy data to include tiered servers and meshed clients. This is demonstrated in Fig. 23 which 
depicts MSDPI signaling exchanges between OpenSIPS servers, the signaling exchange between the KGs 
through the OpenSIPS proxy, and the signaling exchange between the router and the KG. 

 
 
 

 
 

Fig. 22 — MSDPI peer-to-peer (P2P) CONOPS 
 
 
 



 
Exploiting the MSDPI 29 
 

 

 
 

Fig. 23 — MSDPI client-server CONOPS 
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13.1 MSDPI Warfighter Concept of Operations 
 
Figure 24 demonstrates how the MSDPI would function within a deployed warfighter unit. This 

capability was proven in the SIP Discovery Service Prototype (Ref. 2, paragraph 16) which simulated a 
mobile network encryption device exchanging PTD data with a backbone network’s network encryption 
device. Fig. 25 depicts a scenario of a hand-held device using services from a backbone services server as 
it is switched from one local mobile services server to another mobile server. The MSDPI protocol 
assures a seamless communications path during this scenario. 

 
 
 

 
 

Fig. 24 — MSDPI warfighter CONOPS 
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Fig. 25 — MSDPI warfighter reconfigurability CONOPS 
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14 OPERATIONAL PROTOTYPE EXAMPLES 
 

14.1 Prototype Testing, Architecture, and Commands 
 

14.1.1 How the Prototypes Were Tested 
 
To help demonstrate the concepts discussed in this design, a ping experiment was conducted. Ping is 

a network diagnostic tool often used to determine the accessibility of one host to another. This experiment 
included establishing encryption device peers. Note, the key management process and network encryption 
device logistic deployment and installation were assumed to be established, and only the peer discovery, 
peer configuration, peer synchronization, and data traffic flow, monitoring, and recovery were 
demonstrated. Further note, the establishment of communication paths was static. That is to say, a 
determined set of paths with known service level agreements were assumed. Also, to simplify the 
experiment, it was assumed that all physical interfaces were initialized to include the secure establishment 
of the out-of-band control channel between LDC MSDPIs. Additionally, liberties were taken with the 
subsystems by assuming that several Linux subsystem functions simulated various components of the 
MSDPI KG. For example, the NMS PTD I-R, PTD Label I/O, and MSDPI control plane interface 
between these subsystems were simulated by the MSDPI daemon, MPLS-Linux subsystem, and the 
interface between these Linux components.  

 
The first task in the ping experiment was to establish communications between local LDC MSDPI I-

Rs. This was accomplished through the initialization of the PTD NMS I-R which was the first component 
to run within the MSDPI and configured all the other I-Rs. The next action of the local MSDPI PTD 
NMS I-R, when configured as an Initiator, was to begin negotiating service level agreements with a 
Responder. No traffic traversed the MSDPI until the negotiation between MSDPI peers was successfully 
completed. Finally, traffic policy between peering PTD NMS I-Rs was set during configuration. Then the 
MSDPI Initiator initialized a security association. The MSDPI configured as a Responder performed any 
LDC reconfiguration action required to synchronize with the Initiator. Once the policy was established 
between all the I-Rs — that is, the VRFB assigned policy to egress and ingress label paths per the results 
of the policy negotiations, the PTD I-R and the CTD I-R configured the Label Data I/Os according to the 
resulting negotiation configuration instructions, and the peering MSDPIs established communication 
paths — the ping was sent between systems. The VRFB then began, by a startup command from the PTD 
NMS I-R, to accept the ping traffic. At that point the ping traffic began flowing from the VRFB to the 
Label Data I/O and on to the EE, which began scanning the ping traffic, looking for the appropriate label 
values and the point at which the EE was to begin the encryption process. After being encrypted, the ping 
traffic was sent to the CTD Label Data I/O for output queuing and then to the CTD VRFB for placing into 
the appropriate PDC LSP. 

 
14.1.2 MSDPI Prototype Architecture 

 
The prototypes developed for the FEON HSET program consist of three basic components, the 

Initiator, the Responder, and the Functional Module. Figure 26 illustrates the relationship between the 
prototype subsystems. For example, the Responder listens on a specified port for incoming SIP SIMPLE 
MESSAGE traffic. When it receives a SIMPLE MESSAGE, it decodes the message subject line and calls 
the appropriate Function Module based on the “type” code, passing any attached PIDF data to the 
Function Module. Upon receiving a request from the Responder to begin processing a SIMPLE 
MESSAGE, the Functional Module first decodes the command “code” subject line key word so it 
understands how to process any attached PIDF data. If the SIP subject contains the “Question” key word 
and the Functional Module has completed processing the incoming request, the Functional Module builds 
a response SIP subject line containing the “Answer” key word and any appropriate “type” and command 
“code” key word values. The Initiator is typically only run at system boot-up to initiate any startup dialog 
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between MSDPIs. For example, it may be used to initialize a security association between peering 
MSDPI network encryption devices. 

 
 
 

 
 

Fig. 26 — MSDPI prototype architecture 
 
 
 

Prototypes have been developed as guides for implementing the MSDPI. A prototype was first 
developed for the SIP-DS [2]. For the current effort, it was enhanced to support a distributed architecture. 
For example, signaling between subsystems is accomplished through SIP MESSAGE PIDF exchanges 
translated to Linux Netlink sockets. In fact, because the MSDPI architecture uses SIP MESSAGES for the 
subsystem component design, the MSDPI can be distributed not only between subsystems within a single 
operating system (OS), but also between multiple OS and hardware systems. The MSDPI prototypes 
require several supporting subsystem libraries, such as the “Sofia-SIP” SIP development system, for 
example. As Fig. 27 illustrates, the MSDPI links directly with the Linux Quagga Routing Information 
Base subsystem, the Linux MPLS-Linux subsystem, and the Linux OpenVPN and IPSec VLAN services 
subsystems. Essentially, MSDPI becomes the transport mechanism for these subsystems. For the RIB, 
LSP, and IPSec databases, updates are accomplished through the MSDPI protocol. 
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Fig. 27 — MSDPI software architecture 
 
 
 
14.1.3 MSDPI Commands 

 
Table 3 lists the MSDPI commands. Because MSDPI exploits the Sofia-SIP application 

programming interface (API) and its application called “Sofia-cli”, these commands are simply 
extensions to that application’s command-line. This further demonstrates this architecture’s compliance to 
existing SIP standards without modification. Basically, the commands are divided into SIP-related 
commands and MSDPI-related commands. For example, the command “b[ye]” is a typical SIP command 
and part of the Sofia-cli command set which terminates a SIP client connection with another SIP client or 
server. “m[essage]” is another typical SIP command, which sends an attached message to a peer. 

 
Some of the more widely used MSDPI commands include “ilptdd” which initializes the local plain 

text domain database. The “saapplf” command sends an application PIDF to the targeted peer; used by the 
MSDPI Test Master, this is how each client receives its test directives. Some other MSDPI commands 
include Route Information Base data updates (how MSDPI performs router address updates), SNMP 
information updates, IPSec parameter updates (secure VLAN configuration peer updates), plain text 
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domain database updates to network encryption device peers and, when enabled, other commands such as 
MPLS configuration parameters and Juniper proxy configuration commands.14F

12  
 
Generally, every MSDPI-specific command format is: <command> <URI> <options>. Only the help 

and list commands exclude the URI and options. Table 3 lists the current MSDPI commands. 
 
 

Table 3 — MSDPI Commands 
 

COMMAND FUNCTION 
addr <my-sip-address-uri>  (set public address) 
b  (bye) 
c  (cancel) 
hold <to-sip-address-uri>  (hold) 
i <to-sip-address-uri>  (invite) 
k <[method:\”realm\”:user:]password>  (authenticate) 
l  (list operations) 
m <to-sip-address-uri>  (message) 
to <to-sip-address-uri>  (options) 
ref <to-sip-address-uri>  (refer) 
r [sip-registrar-uri]  (register) 
u  (unregister) 
p [-]  (publish) 
up  (unpublish) 
set  (print current settings) 
s <to-sip-address-uri>  (subscribe) 
llappld <to-sip-address-uri>  (List local in memory APPLication Dbase) 
llptdd <to-sip-address-uri>  (List local in memory PTD Dbase) 
llscd <to-sip-address-uri>  (List local in memory System Command Dbase) 
llsnmpd <to-sip-address-uri>  (List local in memory SNMP Dbase) 
lrptdd <to-sip-address-uri>  (List remote in memory PTD Dbase) 
lrscd <to-sip-address-uri>  (List remote in memory System Command 

Dbase) 
lrsnmpd <to-sip-address-uri>  (List remote in memory SNMP Dbase) 
llIPSt <to-sip-address-uri>  (List local IPSec tunnel information) 
clIPSt <to-sip-address-uri>  (clear local IPSec tunnel information) 
ilappld <to-sip-address-uri> [action code:0000(load only) or 
0001(load & execute)] [local filename]  

(Initialize local in memory APPLication Dbase) 

ilptdd <to-sip-address-uri> [local filename] [action 
code:0005(IPSec) or 0006(RIB)]  

(Initialize local in memory PTD Dbase) 

ilsnmpd <to-sip-address-uri> [local filename]  (Initialize local in memory SNMP Dbase) 
irptdd <to-sip-address-uri> [remote filename] [action 
code:0005(IPSec) or 0006(RIB)]   

(Initialize remote in memory PTD Dbase) 

ilRIBt <to-sip-address-uri> [local filename]  (Initialize local Route Information Base) 
irRIBt <to-sip-address-uri> [remote filename]  (Initialize remote Route Information Base) 
ilsc <to-sip-address-uri> [action] [local filename] 
[actions:0000(init only)0001(init & execute)] 

(Initialize local in memory Raw system 
commandline Dbase) 

sqf <to-sip-address-uri> <TAG> <TYPE> <PIDF> <file>  (Send question TAG:TYPE with or without 
[PIDF file]) 

                                                      
12 These last two commands are not shown in Table 3. To reduce the complexity of the system, some MSDPI 

commands are built into the system only when needed to support specific environments. 
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Table 3 (cont.) — MSDPI Commands 
 

COMMAND FUNCTION 
saf <to-sip-address-uri> <TAG> <TYPE> <PIDF> <file>  (Send answer TAG:TYPE with or without 

[PIDF file]) 
saapplf <to-sip-address-uri> <TAG> <TYPE> <file>  (Answer with APPLication database file: 

/usr/local/SIPCP/etc/appl.xml) 
sqapplf <to-sip-address-uri> <TAG> <TYPE> <file>  (Question with APPLication database file: 

/usr/local/SIPCP/etc/appl.xml) 
saptdf <to-sip-address-uri> <TAG> <TYPE> <file>  (Answer with Plain Text Domain database file: 

/usr/local/SIPCP/etc/ptd.xml) 
sqptdf <to-sip-address-uri> <TAG> <TYPE> <file>  (Question with Plain Text Domain database file: 

/usr/local/SIPCP/etc/ptd.xml) 
sascf <to-sip-address-uri> SYSTEM <TYPE> <file>  (Answer with SYSTEM database file: 

/usr/local/SIPCP/systemcommand.xml) 
sqscf <to-sip-address-uri> SYSTEM <TYPE> <file>  (Question with SYSTEM database file: 

/usr/local/SIPCP/etc/systemcommand.xml) 
sasnmpf <to-sip-address-uri> <TAG> <TYPE> <file>  (Answer with SNMP database file: 

/usr/local/SIPCP/etc/snmp.xml) 
sqsnmpf <to-sip-address-uri> <TAG> <TYPE> <file>  (Question with SNMP database file: 

/usr/local/SIPCP/etc/snmp.xml) 
slptdd <to-sip-address-uri> <TAG> <TYPE>   (Send local in memory PTD Dbase) 
slsc <to-sip-address-uri> SYSTEM <TYPE>  (Send local in memory Raw System command 

Dbase) 
slsnmpd <to-sip-address-uri> <TAG> <TYPE>  (Send local in memory SNMP Dbase) 
srptdd <to-sip-address-uri> <TAG> <TYPE>  (Send remote in memory PTD Dbase) 
srsnmpd <to-sip-address-uri> <TAG> <TYPE>  (Send remote in memory SNMP Dbase) 
itcl <to-sip-address-uri> [client list filename]  (Initialize test client list: 

/usr/local/SIPCP/etc/clientlist.xml) 
ltcl <to-sip-address-uri>  (List test client list) 
ibt <to-sip-address-uri> [configuration file] <loop count>  (Execute an IB test, file: 

\”usr/local/SIPCP/etc/ibtest.cf\” contains 
commandline) 

sibpt <to-sip-address-uri> <configuration file> <mode>  (server/client) 
stsc <to-sip-address-uri> </usr/local/SIPCP/etc/testscript.xml> (Send test script) 
rtag <to-sip-address-uri> <Subsystem TAG> <IP>:<Port>  (Register subsystem TAG with proxy) 
sdi <to-sip-address-uri> <Set default interface IP address>  
ldi <to-sip-address-uri> <list default interface IP address>  
sURI <to-sip-address-uri> <URI [IP:PORT]>  
lURI <to-sip-address-uri> <list URI>  
sst <to-sip-address-uri> <Set System TAG>  (Set this system as either proxy (MSDPI) or 

subsystem (PTD/TEST/SNMP)) 
lltags <to-sip-address-uri>  (List local TAGs) 
lrtags <to-sip-address-uri>  (List TAGs on URI) 
icp <to-sip-address-uri> <0, 1> <filename>  (initialize console printing) 
idp <to-sip-address-uri> <0, 1> <filename>  (initialize data printing) 
U  (unsubscribe) 
z  (zap operation) 
info  
e|q|x (exit) <to-sip-address-uri>  
h|?  (help) 
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14.2 SIP Discovery Service Prototype 
 
Figure 28 illustrates the first prototype test of the SIP PTD Discovery Service (SIP-DS). The SIP-

DS, the predecessor and functional equivalent to the MSDPI, is a software daemon that runs in Fedora 
Linux-based laptops and rack-mounted computers. This prototype test simulated a typical HAIPE KG 
IPSec15F

13 VLAN. This exercise demonstrated the SIP-DS (aka MSDPI) simulating the IPSec functionality 
of a core HAIPE KG and also operating as an edge and mobile HAIPE device. As Fig. 28 depicts, the 
SIP-DS interconnected IPSec tunnels between simulated KGs. Included in this configuration were 
connected secure tunnels between backbone KGs and secure tunnels between mobile systems and edge 
devices. Once all the IPSec tunnels were established by the SIP-DS KGs, traffic was exchanged between 
the simulated command/analysis center, simulated imagery center, services center, and remote mobile 
workstations. All SIP-DS XML configurations were built prior to deployment so that the system would 
boot up into a functional running configuration. 

 
 
 

 
 

Fig. 28 — SIP-DS prototype architecture 
 

  

                                                      
13 See RFC 2401 [8]. 
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14.3 Commercial Product Prototypes 
 
Figure 29 illustrates how MSDPI integrates with commercial products, using Bay Microsystems 

components as an example. NRL has demonstrated the viability of running the MSDPI within an over-
the-counter network device without having to change the product’s development or operational 
characteristics. 

 
 

 
 

Fig. 29 — Example of an MSDPI commercial prototype 
 
 
 

14.4 NRL Commercial Prototype 
 
Figure 30 illustrates the first MSDPI FPGA prototype. The purpose of this development effort was to 

build a republication system for prospective vendors wishing to learn how to implement the MSDPI. This 
prototype used the sIXis Reconfigurable FPGA development system called the SY1000-DS. This system 
consisted of several FPGA components, two designated as “ANDY” and “BARNEY” which processed all 
system I/O. The processor responsible for all core MSDPI functions included a Xilinx Virtex 5 
V5LX1100 called “CHARLIE.” The “C” and “D” FPGA components functioned as the EE I-R. Virtex 5 
V5LX220 “A” and “B” functioned as the MSDPI NMS PTD/CTD I-R components. “A” and “B” 
performed policy and label processing. As Fig. 30 shows, all intra/inter-system communication is through 
the MSDPI protocol.  
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Fig. 30 — First MSDPI FPGA prototype 
 
 
 
14.5 Bay Microsystems Product Prototype 

 
14.5.1 Why the Bay Microsystems ABEx and NP10 Network Devices 

 
The Bay Microsystems product line was selected as part of the FEON HSET program for two 

reasons. First and foremost, Bay was willing to partner with the government for the integration of MSDPI 
into their ABEx/NP10 network device. Second, like several other commercial products, the Bay product 
exploits Buildroot. 

 
14.5.2 Buildroot 14 

 
The Buildroot is a set of Makefiles and patches that makes it easy to generate a complete embedded 

Linux system. Buildroot can generate any or all of a cross-compilation toolchain, a root filesystem, a 
kernel image and a bootloader image. Buildroot is useful mainly for people working with small or 
embedded systems, using various CPU architectures (x86, ARM, MIPS, PowerPC, etc.): it automates the 
building process of your embedded system and eases the cross-compilation process. 

                                                      
14 This section is a direct quote from the Buildroot home page: buildroot.uclibc.org. 
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The major Buildroot features are: 
 Can handle everything in your embedded system development project: cross-compiling 

toolchain, root filesystem generation, kernel image compilation and bootloader compilation. 
Buildroot is also sufficiently flexible that it can also be used for only one or several of these 
steps.  

 Is very easy to set up, thanks to its menuconfig, gconfig and xconfig configuration interfaces, 
familiar to all embedded Linux developers. Building a basic embedded Linux system with 
Buildroot typically takes 15-30 minutes.  

 Supports several hundreds of packages for userspace applications and libraries: X.org stack, 
Gtk2, Qt, DirectFB, SDL, GStreamer and a large number of network-related and system-related 
utilities and libraries are supported.  

 Supports multiple filesystem types for the root filesystem image: JFFS2, UBIFS, tarballs, 
romfs, cramfs, squashfs and more.  

 Can generate an uClibc cross-compilation toolchain, or re-use your existing glibc, eglibc or 
uClibc cross-compilation toolchain  

 Has a simple structure that makes it easy to understand and extend. It relies only on the well-
known Makefile language.  

 
Buildroot is maintained by Peter Korsgaard, and licensed under the GNU GENERAL PUBLIC 

LICENSE V2 (Or later). Stable releases are delivered every three months. 
 

14.5.3 Incorporating MSDPI into Buildroot for the ABEx/NP10 
 
The following scripts were developed to build MSDPI for operation in the ABEx/NP10. Table 4 is 

the Buildroot application package script responsible for the cross-compiling of the MSDPI application. 
 
Table 5 is the required Sofia-SIP libraries compilation script. The MSDPI and Sofia-SIP Buildroot 

menu scripts are found in Table 6 and Table 7. Following Buildroot procedures for adding user-specific 
applications, the following edits and application-specific scripts were made and added to the Buildroot 
scripts and build process. 

 
1. The following entries were inserted into the file “Config.in” which resides within the package’s 

root directory. These changes provide for the selections of the MSDPI and Sofia-SIP application 
packages. 

 - source “package/msdpi/Config.in” 
 - source “package/sofiasip/Config.in” 
 
2. The appropriate archive files “msdpi-08Dec10-0800.tar.gz” and “sofiasip-1.12.10.tar.gz” are 

created and placed in the root directory ./buildroot/dl. Note, the filename of these files must match the 
names used in the corresponding compilation script. 
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Table 4 — MSDPI Buildroot Package Compilation Script 

 

MSDPI_VERSION:=08Dec10-0800  
MSDPI_SOURCE:=msdpi-$(MSDPI_VERSION).tar.gz  
MSDPI_SITE:=http://localhost/BUILDROOT  
MSDPI_DIR:=$(BUILD_DIR)/msdpi-$(MSDPI_VERSION)  
MSDPI_BINARY:=msdpi  
MSDPI_TARGET_BINARY:=usr/bin/msdpi  
MSDPI_MAKE_OPT = LIBS=“-lreadline -lncurses -lpthread -lgobject-2.0 -lgmodule-2.0 -lgthread-2.0 -
lrt -lglib-2.0 -lsofia-sip-ua -lsofia-sip-ua-glib”  
 
$(DL_DIR)/$(MSDPI_SOURCE):  
 $(call DOWNLOAD,$(MSDPI_SITE),$(MSDPI_SOURCE))  
$(MSDPI_DIR)/.source: $(DL_DIR)/$(MSDPI_SOURCE)  
 $(ZCAT) $(DL_DIR)/$(MSDPI_SOURCE) | tar -C $(BUILD_DIR) $(TAR_OPTIONS) -  
 touch $@  
$(MSDPI_DIR)/.configured: $(MSDPI_DIR)/.source  
 (cd $(MSDPI_DIR); rm -rf config.cache; \  
  $(TARGET_CONFIGURE_OPTS) \  
  $(TARGET_CONFIGURE_ARGS) \  
  ./configure \  
  --target=$(GNU_TARGET_NAME) \  
  --host=$(GNU_TARGET_NAME) \  
  --build=$(GNU_HOST_NAME) \  
  --prefix=/usr \  
  --sysconfdir=/etc \  
 )  
 touch $@  
$(MSDPI_DIR)/$(MSDPI_BINARY): $(MSDPI_DIR)/.configured  
 $(MAKE) -C $(MSDPI_DIR)  
$(TARGET_DIR)/$(MSDPI_TARGET_BINARY): $(MSDPI_DIR)/$(MSDPI_BINARY)  
 $(MAKE) DESTDIR=$(TARGET_DIR) -C $(MSDPI_DIR) install-strip  
 mkdir -p $(TARGET_DIR)/usr/local  
 cp -dpf $(MSDPI_DIR)/src/msdpi $(STAGING_DIR)/usr/bin/msdpi  
 cp -dpf $(MSDPI_DIR)/src/msdpi $(TARGET_DIR)/usr/bin/msdpi  
 cp -dpfR $(MSDPI_DIR)/SIPCP $(STAGING_DIR)/usr/local  
 cp -dpfR $(MSDPI_DIR)/SIPCP $(TARGET_DIR)/usr/local  
 cp -dpfR /develop/BUILDROOT/BAY/target_skeleton/opt $(TARGET_DIR)/  
 cp -udpR /develop/BUILDROOT/BAY/target_skeleton/etc/* $(TARGET_DIR)/etc  
 cp -udpR /develop/BUILDROOT/BAY/target_skeleton/root $(TARGET_DIR)/  
 cp -dpfR /develop/BUILDROOT/BAY/target_skeleton/persist $(TARGET_DIR)/   
msdpi: uclibc ncurses $(TARGET_DIR)/$(MSDPI_TARGET_BINARY)  
msdpi-source: $(DL_DIR)/$(MSDPI_SOURCE)  
msdpi-clean:  
 $(MAKE) prefix=$(TARGET_DIR)/usr -C $(MSDPI_DIR) uninstall  
 -$(MAKE) -C $(MSDPI_DIR) clean  
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Table 5 — Sofia-SIP Buildroot Package Compilation Script 
 
SOFIASIP_VERSION:=1.12.10  
SOFIASIP_SOURCE:=sofiasip-$(SOFIASIP_VERSION).tar.gz  
SOFIASIP_SITE:=http://localhost/BUILDROOT  
SOFIASIP_DIR:=$(BUILD_DIR)/sofiasip-$(SOFIASIP_VERSION)  
$(DL_DIR)/$(SOFIASIP_SOURCE):  
 $(call DOWNLOAD,$(SOFIASIP_SITE),$(SOFIASIP_SOURCE))  
$(SOFIASIP_DIR)/.source: $(DL_DIR)/$(SOFIASIP_SOURCE)  
 $(ZCAT) $(DL_DIR)/$(SOFIASIP_SOURCE) | tar -C $(BUILD_DIR) $(TAR_OPTIONS) -  
 touch $@  
$(SOFIASIP_DIR)/.configured: $(SOFIASIP_DIR)/.source  
 (cd $(SOFIASIP_DIR); rm -rf config.cache; \  
  $(TARGET_CONFIGURE_OPTS) \  
  CFLAGS=“$(TARGET_CFLAGS)” \  
  ./configure \  
  --target=$(GNU_TARGET_NAME) \  
  --host=$(GNU_TARGET_NAME) \  
  --build=$(GNU_HOST_NAME) \  
  --prefix=/ \  
  --includedir=/include \  
  --libdir=/lib \  
  $(SOFIASIP_CONFIG_SHARED) \  
 );  
 touch $@  
$(SOFIASIP_DIR)/.compiled: $(SOFIASIP_DIR)/.configured  
 $(MAKE) -C $(SOFIASIP_DIR)  
 touch $@  
$(SOFIASIP_DIR)/.installed: $(SOFIASIP_DIR)/.compiled  
 $(MAKE) DESTDIR=$(TARGET_DIR) -C $(SOFIASIP_DIR) install-strip  
 cp -dpfR $(TARGET_DIR)/include/sofia-resolv $(STAGING_DIR)/usr/include/  
 cp -dpfR $(TARGET_DIR)/include/sofia-sip $(STAGING_DIR)/usr/include/  
 cp -dpf $(STAGING_DIR)/usr/lib/glib-2.0/include/glibconfig.h 
$(STAGING_DIR)/usr/include/glibconfig.h  
$(TARGET_DIR)/usr/include/glibconfig.h  
 cp -dpf $(SOFIASIP_DIR)/libsofia-sip-ua-glib/.libs/libsofia-sip-ua-glib.so*  
$(STAGING_DIR)/usr/lib  
 cp -dpf $(SOFIASIP_DIR)/libsofia-sip-ua/.libs/libsofia-sip-ua.a $(STAGING_DIR)/usr/lib/  
 cp -dpf $(SOFIASIP_DIR)/libsofia-sip-ua/.libs/libsofia-sip-ua.a $(TARGET_DIR)/usr/lib/  
 cp -dpf $(SOFIASIP_DIR)/libsofia-sip-ua-glib/.libs/libsofia-sip-ua-glib.so* 
$(STAGING_DIR)/lib  
 cp -dpf $(SOFIASIP_DIR)/libsofia-sip-ua/.libs/libsofia-sip-ua.a $(STAGING_DIR)/lib/  
 cp -dpf $(SOFIASIP_DIR)/libsofia-sip-ua/.libs/libsofia-sip-ua.a $(TARGET_DIR)/lib/  
 touch $@  
sofiasip: uclibc $(SOFIASIP_DIR)/.installed  
sofiasip-source: $(DL_DIR)/$(SOFIASIP_SOURCE)  
sofiasip-clean:  
 $(MAKE) prefix=$(TARGET_DIR)/usr -C $(SOFIASIP_DIR) uninstall  
 -$(MAKE) -C $(SOFIASIP_DIR) clean  
sofiasip-dirclean:  
 rm -rf $(SOFIASIP_DIR)  
ifeq ($(strip $(BR2_PACKAGE_SOFIASIP)),y)  
TARGETS+=sofiasip  
endif  
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Table 6 — MSDPI Buildroot Package Config.in Menu Script 

 

config BR2_PACKAGE_MSDPI  
 bool “msdpi”  
 help  
   Multi-Service Domain Protecting Interface.  
   http://localhost/BUILDROOT  

 
 
 

Table 7 — Sofia-SIP Buildroot Package Menu Script 
 

config BR2_PACKAGE_SOFIASIP  
 bool “sofiasip”  
 help  
   Sofia SIP library.  
   http://sofia-sip.sourceforge.net/download.html  

 
 
 

14.5.4 Shortcomings to the Bay Microsystems Implementation of Buildroot 
 
The Buildroot is always evolving to increase the feature sets it includes in its distribution so it 

supports more applications and kernel updates and enhancements. Particularly, it provides new updates 
that support hardware-specific additions as more and more product vendors incorporate Buildroot as their 
product line operating system. This requires hardware manufacturers to actively provide updates to any 
current Buildroot updates.  

 
Further, MSDPI and Sofia-SIP exploit libraries that are incorporated into the latest Buildroot 

releases. Unfortunately, the Bay Microsystems implementation of Buildroot corresponds to a release of 
Buildroot prior to 2009, which does not support these libraries.  

 
More important, Buildroot is updated to support the most current and stable release of Linux. Bay’s 

distribution is currently (as of this writing) built against the Linux 2.6.19 release. MSDPI is built against 
Buildroot release 2011 which supports a newer Linux release. Obviously the benefits to a newer Buildroot 
include security enhancements as well as feature set enhancements such as utility libraries like “readline” 
(only one of many MSDPI exploited libraries). However, in attempts to fully incorporate MSDPI within 
the Bay product, the latest Buildroot Linux distribution was replaced with a Bay-supported Linux release. 
Although this was successfully accomplished, what could not be completed was the inclusion of Bay’s 
specific hardware drivers source code for the ABEx/NP10. This source code was not made available. 

 
This has not prevented MSDPI from being cross-compiled for the ABEx/NP10 devices while still 

using the 2011 Buildroot release. But it does prevent MSDPI from being completely integrated into the 
ABEx/NP10 boot image, requiring instead that MSDPI be manually loaded into the device. Besides 
increasing deployment time, this also has the result that MSDPI is not persistent at ABEx/NP10 reload.  
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14.6 NRL MSDPI DISN Policy Proxy Prototype 
 
Figure 31 illustrates how the MSDPI has been developed to function as a policy proxy device for a 

router used by the DoD within its Defense Information Systems Network (DISN) backbone network. 
Here the MSDPI interfaces to a Juniper 10i via Juniper’s JUNOScript interface. MSDPI simply translates 
its exchanged policy PIDF data into JUNOScript messages which are transmitted to a Juniper router via 
its management interface. Since JUNOScript is also XML formatted messages, the translation process is 
seamless.  

 
 
 

 
 

Fig. 31 — DoD DISN policy proxy prototype 
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Table 8 consists of panels containing an extraction from the MSDPI code which is responsible for 

communicating with a Juniper router through its management Ethernet interface. Panel 1 (reading left to 
right) contains the series of canned XML tagged strings used to login into the router. Panel 2 shows an 
“rpc” XML tagged load-configuration command which sets the router’s IP address. Just like the MSDPI 
XML protocol, JUNOScript XML files contain tagged formatted commands. The following is a typical 
JUNOScript tagged command: 

 
<junoscript> 
    <rpc [attributes]> 
       <!-tag elements comment -  -> 
                <interface-state>enabled</interface-state> 
                <input-bytes>25378</input-bytes> 
     </rpc> 
</junoscript> 

 
 

 
 
 

Table 8 — MSDPI Juniper Policy Proxy Program Code 
 
char *loginLine1 = 
“<?xml version=\”1.0\” encoding=\”us-ascii\”?>\0”; 
char *loginLine2 = 
“<junoscript version=\”1.0\” hostname=\”MSDPI\” 
release=\”8.1R1\”>\0”; 
char *loginPass1 = 
“<rpc><request-login><username>\0”; 
char *loginPass2 = 
“</username><challenge-response>\0”; 
char *loginPass3 = 
“</challenge-response></request-login></rpc>\0”; 

char *setConfigLine1 = 
“<rpc><load-configuration action=\”merge\”> 
<configuration>\<interfaces> 
<interface> 
<name>ge-1/0/0</name> 
<unit>\<name>0</name><family><inet><address>\<name>10.133.13
3.1/24</name></address></inet></family></unit> 
</interface></interfaces></configuration> 
</load-configuration> 
</rpc>\0”; 

pthread_join(clientJuniperLoginHandlerThreadID, NULL); 
while(xmtCmdlinePtrs[sentRow]){ 
 send(juniperConnectionSocket,xmtCmdlinePtrs[sentRow], 
     strlen(xmtCmdlinePtrs[sentRow]), 0); 
 while(1){ 
   memset(&currentRcvBuffer[0], 0, currentRcvBufferLength); 
   if((recvCharacterCount=recv(juniperConnectionSocket, 
     &currentRcvBuffer[0],currentRcvBufferLength, 0)) < 0){ 
     pthread_exit(NULL);} 
   else{ 
     receivePtrs = receiveBufferPtrs; 
     while(receivePtrs){ 
       previousReceivePtrs = receivePtrs; 
       receivePtrs = receivePtrs->next;} 
     receivePtrs = previousReceivePtrs; 
     if((newReceivePtrs=malloc(sizeof(struct 
receiveBuffer)))==NULL){ 
       printf(“Failed to allocate a receive buffer\n”); 
       pthread_exit(NULL);} 
      

if((newReceivePtrs->buffer = 
        (char *)malloc(recvCharacterCount)) == NULL){ 
       printf(“Failed to allocate a receive buffer\n”); 
       free(newReceivePtrs); 
       pthread_exit(NULL);} 
     receivePtrs->next = newReceivePtrs; 
     newReceivePtrs->associatedReceiveSocket = 0; 
     newReceivePtrs->next = NULL; 
     strncpy(newReceivePtrs->buffer,&currentRcvBuffer[0], 
             recvCharacterCount); 
     newReceivePtrs->bufferLength = recvCharacterCount; 
     newReceivePtrs->associatedReceiveSocket = 
juniperConnectionSocket; 
     if(strstr(newReceivePtrs->buffer,”</rpc-reply>“) != NULL){ 
       break;}}} 
  if((strstr(newReceivePtrs->buffer,”<load-configuration-
results>“)!=NULL)&& 
     (strstr(newReceivePtrs->buffer,”<load-success/>“) != NULL)){ 
    commitJuniperCommand = 0;} 
  else{commitJuniperCommand = -1;} 
  sentRow++;} 
  printf(“\n\n%s\n”,(char *)&rcvReply[0]); 
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Table 8 (cont.) — MSDPI Juniper Policy Proxy Program Code 

 
if(commitJuniperCommand==0){ 
  char *commitCommand = “<rpc><commit-
configuration><check/></commit-configuration></rpc>“; 
  send(juniperConnectionSocket,commitCommand, 
strlen(commitCommand),0); 
  while(1){ 
    memset(&currentRcvBuffer[0], 0, currentRcvBufferLength); 
    if((recvCharacterCount=recv(juniperConnectionSocket, 
       &currentRcvBuffer[0],currentRcvBufferLength, 0))<0){ 
      pthread_exit(NULL);} 
    else{ 
      receivePtrs=receiveBufferPtrs; 
      while(receivePtrs){ 
        previousReceivePtrs = receivePtrs; 
        receivePtrs = receivePtrs->next;} 
      receivePtrs = previousReceivePtrs; 
      if((newReceivePtrs=malloc(sizeof(struct 
receiveBuffer)))==NULL){ 
        printf(“Failed to allocate a receive buffer\n”); 
        pthread_exit(NULL);} 
     if((newReceivePtrs->buffer= 
            malloc(recvCharacterCount))== NULL){ 
        printf(“Failed to allocate a receive buffer\n”); 
        free(newReceivePtrs); 
        pthread_exit(NULL);} 
      receivePtrs->next = newReceivePtrs; 
      newReceivePtrs->associatedReceiveSocket = 0; 

       newReceivePtrs->next = NULL; 
      strncpy(newReceivePtrs->buffer,&currentRcvBuffer[0], 
              recvCharacterCount); 
      newReceivePtrs->bufferLength=recvCharacterCount; 
      newReceivePtrs-
>associatedReceiveSocket=juniperConnectionSocket; 
      if(strstr(newReceivePtrs->buffer,”</rpc-reply>“) != NULL){ 
        if(strstr((char *)newReceivePtrs->buffer,”<commit-check-
success/>“)!=NULL){ 
          printf(“Commit check successful with: %s\n”, 
                 newReceivePtrs->buffer);} 
        break;} 
      else if(strstr((char *)newReceivePtrs-
>buffer,”<status>fail</status>“)!=NULL){ 
        printf(“Dialogue failure.\n”); 
        pthread_exit(NULL);} 
      else if(strstr((char *)newReceivePtrs->buffer,”</junoscript”) != 
NULL){ 
        printf(“Dialogue terminated with: %s\n”, 
               newReceivePtrs->buffer); 
        pthread_exit(NULL);} 

    else if(strstr(newReceivePtrs->buffer,”<commit-check-success/>“) 
!= NULL){ 
      printf(“Commit check successful with: %s\n”,newReceivePtrs-
>buffer); 
        break;}}} 
char *commitIt = “<rpc><commit-configuration/></rpc>“; 
send(juniperConnectionSocket,commitIt, strlen(commitIt), 0); 
while(1){ 
  memset(&currentRcvBuffer[0], 0, currentRcvBufferLength); 
  if((recvCharacterCount=recv(juniperConnectionSocket, 
      &currentRcvBuffer[0],currentRcvBufferLength,0))<0){ 
    pthread_exit(NULL);} 
  else{ 
    receivePtrs = receiveBufferPtrs; 
    while(receivePtrs){ 
      previousReceivePtrs = receivePtrs; 
      receivePtrs = receivePtrs->next;} 
    receivePtrs = previousReceivePtrs; 
    if((newReceivePtrs=malloc(sizeof(struct receiveBuffer)))== 
       NULL){ 
      printf(“Failed to allocate a receive buffer\n”); 
      pthread_exit(NULL);} 
   

  if((newReceivePtrs->buffer = 
       malloc(recvCharacterCount)) == NULL){ 
      printf(“Failed to allocate a receive buffer\n”); 
      free(newReceivePtrs); 
      pthread_exit(NULL);} 
    receivePtrs->next = newReceivePtrs; 
    newReceivePtrs->associatedReceiveSocket = 0; 
    newReceivePtrs->next = NULL; 
    strncpy(newReceivePtrs->buffer, 
          (char *)&currentRcvBuffer[0], 
          recvCharacterCount); 
    newReceivePtrs->bufferLength = recvCharacterCount; 
    newReceivePtrs->associatedReceiveSocket = 
juniperConnectionSocket; 
    if(strstr(newReceivePtrs->buffer,”</rpc-reply>“)!= NULL){ 
      if(strstr(newReceivePtrs->buffer,”<commit-success/>“) != 
NULL){ 
        printf(“Commit successful with: %s\n”,newReceivePtrs-
>buffer);} 
      break;} 
    else if(strstr((char *)newReceivePtrs-
>buffer,”<status>fail</status>“)!=NULL){ 
      printf(“Dialogue failure.\n”); 
      pthread_exit(NULL);} 

 else if(strstr((char *)newReceivePtrs-
>buffer,”</junoscript”)!=NULL){ 
   printf(“Dialogue terminated with: %s\n”,newReceivePtrs->buffer); 
   pthread_exit(NULL);} 
 else if(strstr((char *)newReceivePtrs->buffer,”<commit-
success/>“)!=NULL){ 
   printf(“Commit successful with: %s\n”,newReceivePtrs->buffer); 
 }}}} 
pthread_exit(NULL); 
} 
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15 MSDPI AS A TEST SUITE 
 
The MSDPI has proven to work well as a network test suite. Figure 32 demonstrates one of the 

successful test runs using the MSDPI as a Test Master (server) and Test Client system for conducting the 
InfiniBand test “ib_send_bw” (or sometimes referenced as “send_bw”). The MSDPI Test Master, using 
the MSDPI protocol, transmits a test configuration PIDF to each MSDPI Test Client. The clients process 
the configurations becoming either a listener or sender for the test. In this case the test is the ib_send_bw. 
The Test Client’s MSDPI reads the PIDF files and spawns off either a listener ib_send_bw or sender 
ib_send_bw. Each of these spawned subsystems functions exactly as the standalone version of 
ib_send_bw17F

15 except the data is reported in a format suited for translation to a typical spreadsheet 
application. Additionally, the MSDPI “perftest” utilities18F

16 have been enhanced to analyze and report on 
IB call setup performance. This feature is not available with the standalone version of the perftest suite, 
found only in the MSDPI subsystem version of the utilities. Further, the MSDPI utilities have the ability 
to repeat each test, to include call setup as well as the iteration sequences. This can been seen in Fig. 33, 
“Run Count,” which shows an executed test count of 1,146,653 runs with call setups and 1,146,653,000 
test iterations, that is 1,000 iterations for each call setup. 

 
The perftest tools consist of the following standalone utilities: send_bw, send_lat, read_bw, read_lat, 

write_bw, write_lat, rdma_bw, and rdma_lat. Two of these utilities had particular interest for the initial 
testing to be performed: send_bw and write_bw. Both these utilities send a stream of data from IB queue-
pairs (QPs). The main difference between these two is how the QP sending process is performed. 
send_bw establishes a connection between IB hosts, then transmits a single QP. write_bw transmits a 
group of QPs per connection. Since send_bw would exercise both MSDPI subsystem processes and 
network bandwidth limitations, to include system interfaces and IB data transfer setup, it was selected as 
the first utility to be integrated into MSDPI.  

 
Although the perftest tools function without problems as standalone utilities, there were several 

changes required before the tool suite could be integrated into the MSDPI system. It should be noted, all 
the utilities are basically structured the same, that is, programming changes to one can be incorporated 
into the others without too many changes. However, the changes for the first selected utility, in this case 
send_bw, were substantial, resulting in unanticipated code development and testing. The most troubling 
correction was that almost all memory allocation APIs required correction to prevent early termination of 
the send_bw process when integrated into MSDPI. The next change required rewriting send_bw so it was 
not a standalone utility but a subsystem to MSDPI. This meant modifications to the system main function, 
essentially removing the main function and reworking all the command line inputs as subsystem 
parameters. Additionally, APIs were developed between the MSDPI core system and the newly created 
send_bw subsystem. This included SIP message processing and send_bw test data database processing. 
Next, new timer routines were created to allow for synchronized testing between multiple MSDPI test 
systems. A new timer feature allowed the tester to queue up several systems to begin testing at a specific 
time. Another change was the reporting process. Fig. 34 illustrates the new reporting format which now 
includes μsec time data.  

 
Table 9 lists the listener command directives and Table 10 lists the sender command directives when 

bundled into a test’s SIP message PIDF document. Most of the tagged 19F

17 directives are self explanatory. A 

                                                      
15 See the OFED for details on how the InfiniBand “perftest” utilities operate. 
16 The “perftest” utilities typically include ib_send_bw, ib_send_lat, ib_read_bw, ib_read_lat, ib_write_bw, 

ib_write_lat, ib_rdma_bw and ib_rdma_lat. 
17 The reader should become familiar with the XML format to understand how the MSDPI exploits XML tags. 
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few should be noted such as the <current_time> and <start_time> tags. The <current_time>18 tag is used 
by the MSDPI server to synchronize all client time to NTP time. The <start_time> informs the client to 
begin the test processing at the designated time. <start_time> places the client in a wait-until-time-expires 
loop. The <command> tag denotes the perftest to run and the <arguments> tag lists the command options 
as found in the typical OFED perftest standalone application. As with the OFED version of the perftest 
tools, test clients must be TCP Port paired. To clarify which listener a sender is peering with, an 
additional command-line option “-h” was added. This option simply designates the listener’s IP address. 

 
The last figure, Fig. 35, contains an example of an MSDPI ib_send_bw test and some of the 

reporting data. This report details how the MSDPI ib_send_bw tool was used to report on the 
performance of a QSFP-to-CX4 cable configuration. The test also demonstrated some problems with the 
OFED release which were repaired in the MSDPI version. Fig. 34 is an example of typical ib_send_bw 
test data collected and ready for formatting into a final test report. 

 
 
 

 
 

Fig. 32 — MSDPI Test Master/Client configuration of IB tests 
 
 

                                                      
18 The <current_time> feature has not been fully implemented in the first release of MSDPI; therefore, it is assumed 

all MSDPI clients are NTP clock synchronized. 
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Fig. 33 — Captured MSDPI IB test results 
 
 

          TIME TEST RAN             No.              ITER           PEAK          AVG 
                                                     BYTES                            BW              BW 
                                                     SENT   
======================================================== 
04-11-2011-11:28:20.894780:     65536         1000          3201.63          3200.00 
04-11-2011-11:28:21.208097:     65536         1000          3200.46          2147.42 
04-11-2011-11:28:21.672812:     65536         1000          3197.93          3196.36 
04-11-2011-11:28:21.979729:     65536         1000          3202.12          3200.40 
04-11-2011-11:28:22.556627:     65536         1000          3202.12          3200.45 
04-11-2011-11:28:22.997049:     65536         1000          3200.21          3194.69 
04-11-2011-11:28:23.454400:     65536         1000          3197.38          3194.31 
04-11-2011-11:28:23.764796:     65536         1000          3201.69          3200.04 
04-11-2011-11:29:19.560067:     65536         1000          3201.63          3199.93 
04-11-2011-11:29:19.996219:     65536         1000          3201.75          3200.10 
04-11-2011-11:29:20.458303:     65536         1000          3201.81          3200.14 
04-11-2011-11:29:20.962138:     65536         1000          3196.27          3194.63 

 
Fig. 34 — Captured output of MSDPI IB test results 
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Fig. 35 — Captured MSDPI IB QSFP-to-CX4 cable test results 
 
 
 

Table 9 — MSDPI PIDF - ib_send_bw Listener Configuration File 
 

<?xml version=“1.0” encoding=“ISO-8859-1”?> 
<system_commands> 
<system> 
<system_address>10.2.1.202</system_address> 
<system_prefixlength>24</system_prefixlength> 
<system_ttl>120</system_ttl> 
<application> 
<current_time>05-05-2011 06:15:00</current_time> 
<current_time_usec>0000</current_time_usec> 
<start_time>05-05-2011 06:15:00</start_time> 
<start_time_usec>0000</start_time_usec> 
<command>ib_send_bw</command> 
<arguments>-p 19024 -b -n 1000 -m 2048 -I 400 -s 65536</arguments> 
<mode>server</mode> 
</application> 
<system_command_poc> 
<name>NRL</name> 
<phone>111-111-1111</phone> 
</system_command_poc> 
</system> 
<checksum>SHA-123456789</checksum> 
</system_commands> 

 
 

Demonstrated benefits from this test:
•μsec collection of data points
•Improved IB test performance
•Controlled execution time at real time
•Remote control of testing systems
•Efficient, simplified test scripting
•True performance (call setup)

Demonstrated problems with this test:
•Open source IB tool “ib_send_bw”

• Not thread safe (rewriting)
• Memory leaks (fixed)
• 7115 loop count failure (send 

complete memory leak?)
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Table 10 — MSDPI PIDF - ib_send_bw Sender Configuration File 

 
<?xml version=“1.0” encoding=“ISO-8859-1”?> 
<system_commands> 
<system> 
<system_address>10.2.1.202</system_address> 
<system_prefixlength>24</system_prefixlength> 
<system_ttl>120</system_ttl> 
<application> 
<current_time>04-11-2011 05:00:00</current_time> 
<current_time_usec>0000</current_time_usec> 
<start_time>04-11-2011 11:04:00</start_time> 
<start_time_usec>0000</start_time_usec> 
<command>ib_send_bw</command> 
<arguments>-p 19300 -h 10.2.1.218</arguments> 
<mode>client</mode> 
</application> 
<system_command_poc> 
<name>NRL</name> 
<phone>111-111-1111</phone> 
</system_command_poc> 
</system> 
<checksum>SHA-123456789</checksum> 
</system_commands> 

 
 
 
 
16 MSDPI L2TPV3 TEST FOR LARGE DATA JCTD 
 

The following section outlines a modification to MSDPI to support a test for the Large Data Joint 
Capability Technology Demonstration (JCTD) office. The purpose of the test was to validate the proper 
operation of L2TPv3 within the Bay Microsystems ABEx network device. This MSDPI modification is 
an example of MSDPI using the “system()” function to spawn a program that is not fully integrated into 
the MSDPI core process. When MSDPI calls a program via the system() function, it is run as a separate 
shell command. 

 
16.1 L2TPv3 

 
Layer 2 Tunneling Protocol Version 3 is for encapsulation of multiple protocols within a Layer 2 

communications packet to traverse over IP networks. L2TPv3 provides a pseudo-wire service which 
scales to fit within carrier requirements. 

 
L2TPv3 can be regarded as being to MPLS what IP is to ATM: a simplified version of the same 

concept, with much of the goodness achieved with a fraction of the effort, at the cost of losing some 
technical features considered less important in the market. In the case of L2TPv3, the features lost are 
teletraffic engineering features considered important in MPLS. The protocol overhead of L2TPv3 is also 
significantly bigger than for MPLS. However, there is no reason why these features cannot be re-
engineered in or on top of L2TPv3 in later products. 
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16.2 Raw Collected Data 
 
The following sections provide detailed Netperf19 data collection from the MSDPI L2TPv3 test. In 

all charts of performance results, the horizontal axis is test number and the vertical axis is bandwidth. 
 

16.2.1 Device Comparison Study 
 
Table 11 defines six configurations that were to be tested; five of the six were tested. Figure 36 and 

Fig. 37 show summary data from the five scenarios. The sections ahead provide more detailed data for 
each test. 

 
 
 

Table 11 — Test Configurations for the MSDPI L2TPv3 Test 
 

B2BHost Two hosts directly connected 

HKGH Two hosts connected through two network encryption devices 

HABExH Two hosts connected through two Bay Microsystems ABEx network devices 

HCKGCH Two hosts connected through two Cisco ASR1004 routers through two 
encryption devices 

HCABExCH Two hosts connected through two Cisco ASR1004 routers and two Bay 
Microsystems ABEx network devices 

HCABExKGABExCH Two hosts connected through two Cisco ASR1004 routers through two Bay 
Microsystems ABEx network devices and two encryption devices 

 
 
 
 

                                                      
19 (Extracted from man)  Netperf is a benchmark that can be used to measure various aspects of networking 

performance. Currently, its focus is on bulk data transfer and request/response performance using either TCP or 
UDP, and the Berkeley Sockets interface. In addition, tests for DLPI, and Unix Domain Sockets, tests for IPv6 
may be conditionally compiled-in. 
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Fig. 36 — Test results from the five configurations 

 
 
 

 
Test Recv 

Socket 
Size 
bytes 

Xmt 
Socket 

Size 
bytes 

Xmt 
Msg 
Size 
bytes 

Elpse 
Time 
secs. 

Thruput 
10^6b/s 

Xmt 
CPU 
Util 

Recv 
CPU 
Util 

Xmt 
Local 
μs/KB 

Recv 
remote 
μs/KB 

TCP_STREAM 
(transmit) 

TCP_MAERTS 
(received) 

1 87380 65536 65536 60.01 9909.52 3.4 4.07 0.225 0.269 B2BHost xmit 

2 87380 65536 65536 60.01 9910.27 4.98 3.78 0.329 0.25 B2BHost recv 

           

4 87380 65536 65536 60 9287.49 17.02 44.01 0.601 0.776 HKGH xmit 

5 87380 65536 65536 60.01 9419.26 19.14 35.71 0.666 0.621 HKGH recv 

           

7 87380 65536 65536 60.01 9423.16 2.77 3.81 0.192 0.265 HABExH xmit 

8 87380 65536 65536 60.01 9369.32 4.8 3.67 0.336 0.257 HABExH recv 

           

10 87380 65536 65536 60.02 8379.84 16.1 44.5 0.63 0.87 HCKGCH xmit 

11 87380 65536 65536 60.02 8355.83 20.39 31.56 0.8 0.619 HCKGCH recv 

           

13 87380 65536 65536 60.01 8368.92 15.7 44.79 0.615 0.877 HCH xmit 

14 87380 65536 65536 60.02 8355.57 20.23 32.12 0.793 0.63 HCH recv 

 
Fig. 37 — Summary of L2TPv3 test results 
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16.2.2 Host-to-Host Study 
 
Table 12 and Fig. 38 present host-to-host performance data (B2BHost). This circuit has no network 

devices or encryption devices. Therefore no packet data manipulation was performed. 
 
 

 
Fig. 38 — Host-to-host performance results (B2BHost) 

 
 
 

Table 12 — Host-to-Host Test Data 
 

Test Recv 
Socket 
Size 
bytes 

Xmt 
Socket 
Size 
bytes 

Xmt 
Msg 
Size 
bytes 

Elpse 
Time 
secs. 

Thruput 
10^6b/s 

Xmt 
CPU 
Util 

Recv 
CPU 
Util 

Xmt 
Local 
μs/KB 

Recv 
remote 
μs/KB 

TCP_STREAM 
(transmit) 
TCP_MAERTS 
(received) 

1 87380 65536 65536 60.01 9909.52 3.40 4.07 0.225 0.269 Transmit 

2 87380 65536 65536 60.01 9910.27 4.98 3.78 0.329 0.250 Received 

3 87380 65536 65536 60.01 9908.77 3.04 3.88 0.201 0.257 Transmit 

4 87380 65536 65536 60.01 9910.32 4.94 3.64 0.327 0.241 Received 

5 87380 65536 65536 60.01 9909.64 3.31 3.87 0.219 0.256 Transmit 

6 87380 65536 65536 60.01 9910.28 5.51 3.75 0.364 0.248 Received 

7 87380 65536 65536 60.01 9908.72 3.29 4.05 0.218 0.268 Transmit 

8 87380 65536 65536 60.01 9910.31 5.17 3.67 0.342 0.242 Received 

9 87380 65536 65536 60.01 9907.76 3.22 3.85 0.213 0.254 Transmit 

10 87380 65536 65536 60.01 9910.29 4.98 3.63 0.329 0.240 Received 

11 87380 65536 65536 60.01 9907.64 3.40 3.95 0.225 0.261 Transmit 

12 87380 65536 65536 60.01 9910.31 5.05 3.77 0.334 0.249 Received 

13 87380 65536 65536 60.01 9909.81 3.32 3.98 0.219 0.263 Transmit 

14 87380 65536 65536 60.02 9910.27 5.13 3.63 0.339 0.240 Received 
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16.2.3 Host–KG–KG–Host Study 
 
Table 13 and Fig. 39 present host-to-host through back-to-back KGs performance data (HKGH). 

This circuit has back-to-back Level 3 KG-245X devices between each host. This study was limited to 
Dell 860 hosts; however, the host’s PCIe Gen2 slot was used with Myricom 10GE Fiber XFPs. 

 

 
Fig. 39 — Host–KG–KG–Host performance results (HKGH) 

 
 
 

Table 13 — Host–KG–KG–Host Test Data 
 

Test Recv 
Socket 
Size 
bytes 

Xmt 
Socket 
Size 
bytes 

Xmt 
Msg 
Size 
bytes 

Elpse 
Time 
secs. 

Thruput 
10^6b/s 

Xmt 
CPU 
Util 

Recv 
CPU 
Util 

Xmt 
Local 
μs/KB 

Recv 
remote 
μs/KB 

TCP_STREAM 
(transmit) 
TCP_MAERTS 
(received) 

1 87380 65536 65536 60.00 9323.19 16.88 44.07 0.593 0.775 Transmit 

2 87380 65536 65536 60.00 9287.49 17.02 44.01 0.601 0.776 Transmit 

3 87380 65536 65536 60.01 9419.26 19.14 35.71 0.666 0.621 Received 

4 87380 65536 65536 60.01 9367.24 17.05 44.52 0.596 0.779 Transmit 

5 87380 65536 65536 60.01 9378.41 19.12 35.71 0.668 0.624 Received 

6 87380 65536 65536 60.00 9409.22 17.01 44.70 0.592 0.778 Transmit 

7 87380 65536 65536 60.01 9378.50 19.18 35.70 0.670 0.624 Received 

8 87380 65536 65536 60.00 9247.16 16.94 44.36 0.600 0.786 Transmit 

9 87380 65536 65536 60.01 9340.68 19.29 35.56 0.677 0.624 Received 

10 87380 65536 65536 60.01 9290.24 16.89 44.60 0.596 0.787 Transmit 

11 87380 65536 65536 60.01 9381.07 19.25 35.91 0.672 0.627 Received 

12 87380 65536 65536 60.00 9290.76 16.91 44.33 0.596 0.782 Transmit 

13 87380 65536 65536 60.01 9378.46 19.22 35.78 0.671 0.625 Received 

14 87380 65536 65536 60.01 9289.96 16.91 44.42 0.596 0.783 Transmit 
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16.2.4 Bay Microsystems Baseline Study 
 
Table 14 and Fig. 40 present raw performance data collected with the Bay Microsystems ABEx 5010 

inserted into the test bed circuit: host–ABEx–ABEx–host (HABExH). 
 

 
Fig. 40 — Performance results for two hosts connected through two Bay Microsystems ABEx network devices (HABExH) 

 
 

Table 14 — Host–ABEx–ABEx–Host Test Data 
 

Test Recv 
Socket 
Size 
bytes 

Xmt 
Socket 
Size 
bytes 

Xmt 
Msg 
Size 
bytes 

Elpse 
Time 
secs. 

Thruput 
10^6b/s 

Xmt 
CPU 
Util 

Recv 
CPU 
Util 

Xmt 
Local 
μs/KB 

Recv 
remote 
μs/KB 

TCP_STREAM 
(transmit) 
TCP_MAERTS 
(received) 

1 87380 65536 65536 60.01 9423.16 2.77 3.81 0.192 0.265 Transmit 

2 87380 65536 65536 60.01 9369.32 4.80 3.67 0.336 0.257 Received 

3 87380 65536 65536 60.01 9182.00 2.90 3.86 0.207 0.276 Transmit 

4 87380 65536 65536 60.01 9469.60 5.11 3.77 0.354 0.261 Received 

5 87380 65536 65536 60.01 9383.65 2.59 3.77 0.181 0.263 Transmit 

6 87380 65536 65536 60.01 9401.74 5.37 3.71 0.374 0.259 Received 

7 87380 65536 65536 60.01 9384.96 2.80 3.75 0.196 0.262 Transmit 

8 87380 65536 65536 60.01 9336.22 5.42 3.88 0.380 0.272 Received 

9 87380 65536 65536 60.01 9384.22 2.69 3.77 0.188 0.263 Transmit 

10 87380 65536 65536 60.01 9104.79 5.00 3.69 0.360 0.266 Received 

11 87380 65536 65536 60.01 9254.84 2.55 3.67 0.180 0.260 Transmit 

12 87380 65536 65536 60.01 9270.70 5.21 3.71 0.368 0.262 Received 

13 87380 65536 65536 60.01 9252.64 2.79 3.87 0.197 0.274 Transmit 

14 87380 65536 65536 60.01 9237.59 4.97 3.68 0.352 0.261 Received 
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16.2.5 Cisco Baseline Study 
 
Table 15 and Fig. 41 present raw performance data collected with back-to-back Cisco ASR1004 

routers inserted into the test bed circuit: host–ASR–KG–KG–ASR–host (HCKGCH). 

 
Fig. 41 — Performance data for two hosts connected through two CISCO ASR1004 routers through two encryption devices 

(HCKGCH) 
 
 

Table 15 — Host–ASR–KG–KG–ASR–Host Test Data 
 

Test Recv 
Socket 
Size 
bytes 

Xmt 
Socket 
Size 
bytes 

Xmt 
Msg 
Size 
bytes 

Elpse 
Time 
secs. 

Thruput 
10^6b/s 

Xmt 
CPU 
Util 

Recv 
CPU 
Util 

Xmt 
Local 
μs/KB 

Recv 
remote 
μs/KB 

TCP_STREAM 
(transmit) 
TCP_MAERTS 
(received) 

1 87380 65536 65536 60.01 8368.92 15.70 44.79 0.615 0.877 Transmit 

2 87380 65536 65536 60.02 8355.57 20.23 32.12 0.793 0.630 Received 

3 87380 65536 65536 60.01 8371.20 15.69 44.82 0.614 0.877 Transmit 

4 87380 65536 65536 60.02 8363.93 20.37 31.70 0.798 0.621 Received 

5 87380 65536 65536 60.02 8369.13 15.75 44.82 0.617 0.877 Transmit 

6 87380 65536 65536 60.02 8363.02 20.50 31.74 0.803 0.622 Received 

7 87380 65536 65536 60.02 8369.12 15.75 44.74 0.617 0.876 Transmit 

8 87380 65536 65536 60.02 8362.62 20.50 31.73 0.803 0.622 Received 

9 87380 65536 65536 60.01 8370.36 15.72 44.87 0.615 0.878 Transmit 

10 87380 65536 65536 60.02 8361.25 20.49 31.70 0.803 0.621 Received 

11 87380 65536 65536 60.01 8372.21 15.82 44.93 0.619 0.879 Transmit 

12 87380 65536 65536 60.02 8361.63 20.56 31.78 0.806 0.623 Received 

13 87380 65536 65536 60.01 8369.08 15.70 44.82 0.615 0.878 Transmit 

14 87380 65536 65536 60.02 8362.87 20.66 31.81 0.810 0.623 Received 
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16.2.6 Host, L2TPv3 VPN Device and Router Study 
 
This test (HCABExCH), in which two hosts were to be connected through Cisco ASR1004 routers 

and two Bay Microsystems ABEx network devices, was not performed. Therefore, there was no 
resolution for the previous test, the Cisco baseline test. 

 
16.2.7 Host, L2TPv3 VPN Device, Router with Network Encryption Device Study 

 
Table 16 and Fig. 42 present raw performance data collected from two Dell 860 hosts connected 

through two Cisco ASR1004 routers, two Bay Microsystems ABEx network devices, and two Level3 Red 
Eagle KG-245X devices (HCABExKGABExCH). 

 
 

 
Fig. 42 — Performance data collected from two Dell 860 hosts connected through two CISCO ASR1004 routers, two Bay 
Microsystems ABEx network devices, and two Level3 Red Eagle KG-245X encryption devices (HCABExKGABExCH) 
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Table 16 — Host–ASR–ABEx–KG–KG–ABEx–ASR–Host Test Data 

 
Test Recv 

Socket 
Size 
bytes 

Xmt 
Socket 
Size 
bytes 

Xmt 
Msg 
Size 
bytes 

Elpse 
Time 
secs. 

Thruput 
10^6b/s 

Xmt 
CPU 
Util 

Recv 
CPU 
Util 

Xmt 
Local 
μs/KB 

Recv 
remote 
μs/KB 

TCP_STREAM 
(transmit) 
TCP_MAERTS 
(received) 

1 87380 65536 65536 60.02 8379.84 16.10 44.50 0.630 0.870 Transmit 

2 87380 65536 65536 60.02 8355.83 20.39 31.56 0.800 0.619 Received 

3 87380 65536 65536 60.02 8359.12 15.55 44.42 0.610 0.871 Transmit 

4 87380 65536 65536 60.02 8355.62 20.45 31.57 0.802 0.619 Received 

5 87380 65536 65536 60.01 8359.99 15.52 44.20 0.608 0.866 Transmit 

6 87380 65536 65536 60.02 8354.70 20.40 31.51 0.800 0.618 Received 

7 87380 65536 65536 60.01 8359.32 15.52 44.37 0.609 0.870 Transmit 

8 87380 65536 65536 60.02 8354.61 20.50 31.64 0.804 0.621 Received 

9 87380 65536 65536 60.01 8359.79 15.54 44.55 0.609 0.873 Transmit 

10 87380 65536 65536 60.02 8354.76 20.49 31.61 0.804 0.620 Received 

11 87380 65536 65536 60.02 8358.48 15.58 44.28 0.611 0.868 Transmit 

12 87380 65536 65536 60.02 8352.43 20.54 31.58 0.806 0.619 Received 

13 87380 65536 65536 60.01 8359.48 15.66 44.56 0.614 0.873 Transmit 

14 87380 65536 65536 60.02 8352.01 20.51 31.54 0.805 0.619 Received 

 
 
 

16.3 L2TPv3 Test Conclusions 
 
Without a clear resolution to the performance issues with the Cisco ASR router, no conclusive 

results can be reported. However, it appears that without the ASR, host-to-host performance is not 
adversely impacted with the ABEx implementation of L2TPv3. Therefore, it is assumed that if a router is 
operating properly, the ABEx L2TPv3 protocol implementation should have no effect on traffic 
performance. 

 
17 MSDPI INFINIBAND SERVER-CLIENT TEST 

 
The following test was conducted to collect bandwidth performance data between a single IB server 

hardware platform, thus single IB interface, and multiple client hardware platforms. By using the 
ib_send_bw subsystem test utility, three MSDPI ib_send_bw test clients began sending IB QPs to the 
MSDPI ib_send_bw server at a predetermined time. For this test, startup was set to start at the same time 
from all the client platforms. 

 
17.1 System Configuration Overview 

 
Figure 43 illustrates the test configuration. This configuration consisted of two Dell R610s and two 

Dell R310s, named TD24, TD25, TD18, and TD30 for discussion purposes. One of the R610s, TD24, 
acted as the MSDPI ib_send_bw server and the other three systems (TD25, TD18, and TD30) functioned 
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as ib_send_bw clients. The R610s are Intel 5500 series processors with Mellanox PCIe Connect X 
MHZH29-XTR dual port IB/10GE network adapter cards. The specifications for this card are detailed in 
Table 17. 
 
 
 

 
 

Fig. 43 — InfiniBand startup performance test 
 
 
 

Table 17 — InfiniBand Network Adapter Specifications 
 

InfiniBand:

Ethernet:

QoS:

RDMA Support:
Data Rate

SFP+ Ethernet:
QSFP:

 InfiniBand:
PCI Express:

IBTA v1.2.1, Auto-Negotiation 
(40Gb/s, 10Gb/s per lane), (20Gb/s, 
5Gb/s per lane) or (10Gb/s, 2.5Gb/s 
per lane) 
IEEE Std 802.3ae 10 Gigabit Ethernet 
IEEE Std 802.3ad Link Aggregation 
and Failover 
IEEE Std 802.3x Pause 
IEEE Std 802.1Q VLAN tags 
IEEE Std 802.1p Priorities 
Multicast 
Jumbo frame support (10KB) 
128 MAC/VLAN addresses per port 
8 Virtual Lanes for InfiniBand 
8 Priority Queues for Ethernet 
Yes, All Ports 
 
10 Gb/s 
40 Gb/s 
2.0 SERDES @ 5.0 GT/s 
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17.2 Test Script Overview 
 
Table 18 contains the MSDPI server configuration commands issued to activate each of the MSDPI 

ib_send_bw test servers. The “icp” command prints diagnostic information on the MSDPI console which 
shows current packet processing information as outlined in Section 15. For this test, three concurrently 
executed MSDPI programs are run because the ib_send_bw subsystem, as of this writing, is not multi-
thread safe. Therefore, each of the three clients will access a predetermined associated ib_send_bw server 
by using a separate, specifically assigned SIP and ib_send_bw port number. 

 
 
 

Table 18 — Configuration Commands for Each MSDPI Server 
 

$ sudo /usr/local/SIPCP/bin/msdpi --contact=sip:10.2.1.202:25060 --subsystemtag=APPL  
--systemtag=APPL 
MSDPI# icp sip:10.2.1.202:25060 1 
 
$ sudo /usr/local/SIPCP/bin/msdpi --contact=sip:10.2.1.202:25061 --subsystemtag=APPL  
--systemtag=APPL 
MSDPI# icp sip:10.2.1.202:25061 1 
 
$ sudo /usr/local/SIPCP/bin/msdpi --contact=sip:10.2.1.202:25061 --subsystemtag=APPL  
--systemtag=APPL 
MSDPI# icp sip:10.2.1.202:25061 1 
 

 
 
 
The client configuration commands are shown in Table 19, Table 20, and Table 21. As with the 

server, the MSDPI command “icp” instructs the subsystem to display diagnostic information about packet 
processing. The command “idp” adds additional diagnostics by collecting, formatting, and then archiving 
the processing information to a log file. This log file can later be exported to a spreadsheet application for 
further analysis. 

 
 
 

Table 19 — TD25 Configuration Command Entries 
 

[TD25]# ./bin/msdpi --contact=sip:10.2.1.218:25060 --subsystemtag=APPL --systemtag=APPL 
MSDPI# icp sip:10.2.1.218:25060 1 
APPL> APPL> idp sip:10.2.1.218:25060 1 /usr/local/SIPCP/logs/13Jul11-0915 

 
 
 

Table 20 — TD18 Configuration Command Entries 
 

[TD18]# ./bin/msdpi --contact=sip:10.2.1.250:25061 --subsystemtag=APPL --systemtag=APPL 
MSDPI# icp sip:10.2.1.250:25061 1 
APPL> idp sip:10.2.1.250:25061 1 /usr/local/SIPCP/logs/13Jul11-0915 
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Table 21 — TD30 Configuration Command Entries 

 

[TD30]# ./bin/msdpi --contact=sip:10.2.1.154:25062 --subsystemtag=APPL --systemtag=APPL 
MSDPI# icp sip:10.2.1.154:25062 1 
APPL> idp sip:10.2.1.154:25062 1 /usr/local/SIPCP/logs/13Jul11-915 

 
 
 
Table 22 details the command directives issued by the MSDPI Test Master to each of the targeted 

test systems (both the ib_send_bw server and clients). Each of the files transmitted (as an MSDPI SIP 
SIMPLE message) contains the test parameter directives (in the MSDPI PIDF) to each of the ib_send_bw 
servers and ib_send_bw clients. Again, note, the ib_send_bw servers are multiple MSDPI instances on the 
same R610 hardware and each of these can run on separate hardware platforms.  

 
Table 23 details the file contents for the servers and Table 24 for the clients. All the server and client 

directives files are basically the same with only the system address, port, and ib_send_bw port values 
changed. Each client’s time tags are configured to the same start time. 

 
 
 

Table 22 — MSDPI Test-Master Test Script Command Entries 
 

MSDPI# saapplf sip:10.2.1.202:25060 APPL 0001 /usr/local/SIPCP/etc/TD24-19200-server-only-
ib_send_bw.xml 
MSDPI# saapplf sip:10.2.1.202:25061 APPL 0001 /usr/local/SIPCP/etc/TD24-19201-server-only-
ib_send_bw.xml 
MSDPI# saapplf sip:10.2.1.202:25062 APPL 0001 /usr/local/SIPCP/etc/TD24-19202-server-only-
ib_send_bw.xml 
MSDPI# saapplf sip:10.2.1.218:25060 APPL 0001 /usr/local/SIPCP/etc/TD25-19200-client-
ib_send_bw.xml 
MSDPI# saapplf sip:10.2.1.250:25061 APPL 0001 /usr/local/SIPCP/etc/TD18-19201-client-
ib_send_bw.xml 
MSDPI# saapplf sip:10.2.1.154:25062 APPL 0001 /usr/local/SIPCP/etc/TD30-19202-client-
ib_send_bw.xml 
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Table 23 — MSDPI ib_send_bw Server Test Script Parameter Directives File 
 

<?xml version=“1.0” encoding=“ISO-8859-1”?> 
<system_commands> 
<system> 
<system_address>10.2.1.202</system_address> 
<system_prefixlength>24</system_prefixlength> 
<system_ttl>120</system_ttl> 
<application> 
<current_time>07-13-2011 08:00:00</current_time> 
<current_time_usec>0000</current_time_usec> 
<start_time>07-13-2011 08:00:00</start_time> 
<start_time_usec>0000</start_time_usec> 
<command>ib_send_bw</command> 
<arguments>-p 19200</arguments> 
<mode>server</mode> 
</application> 
<system_command_poc> 
<name>NRL</name> 
<phone>111-111-1111</phone> 
</system_command_poc> 
</system> 
<checksum>SHA-123456789</checksum> 
</system_commands> 

 
 
 

Table 24 — MSDPI ib_send_bw Client Test Script Parameter Directives File 
 

<?xml version=“1.0” encoding=“ISO-8859-1”?> 
<system_commands> 
<system> 
<system_address>10.2.1.218</system_address> 
<system_prefixlength>24</system_prefixlength> 
<system_ttl>120</system_ttl> 
<application> 
<current_time>07-13-2011 09:15:00</current_time> 
<current_time_usec>0000</current_time_usec> 
<start_time>07-13-2011 09:15:00</start_time> 
<start_time_usec>0000</start_time_usec> 
<command>ib_send_bw</command> 
<arguments>-p 19200 -h 10.2.1.202</arguments> 
<mode>client</mode> 
</application> 
<system_command_poc> 
<name>NRL</name> 
<phone>111-111-1111</phone> 
</system_command_poc> 
</system> 
<checksum>SHA-123456789</checksum> 
</system_commands> 
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17.3 Raw Test Data 
 
Table 25, Table 26, and Table 27 contain raw data samples from the ib_send_bw client test systems, 

TD25, TD18, and TD30. 
 
 

Table 25 — Sampling of TD25 Raw Test Data 
 

0714201106 0.609263   65536 1000 3207.08 3205.38  
0714201106 0.090296   65536 1000 3203.86 3202.24  
0714201106 0.454187   65536 1000 3204.85 3203.16  
0714201106 0.868280   65536 1000 2913.13 1711.43  
0714201106 0.397521   65536 1000 3205.03 3203.36  
0714201106 0.764565   65536 1000 3204.97 3203.31  
0714201106 0.215541   65536 1000 3205.03 3203.35  
0714201106 0.652488   65536 1000 2995.10 1714.71  
0714201106 0.095433   65536 1000 3204.97 3203.31  
0714201106 0.637530   65536 1000 3206.58 3204.93  
0714201106 0.160539   65536 1000 3205.03 3203.34  
0714201106 0.663229   65536 1000 3204.17 3202.50  
0714201106 0.101206   65536 1000 3205.22 3203.60  
0714201106 0.546593   65536 1000 3205.03 3203.39  
0714201106 0.990263   65536 1000 3204.85 3203.18  
0714201106 0.455288   65536 1000 3205.47 3203.74  
0714201106 0.741435   65536 1000 3205.16 3203.51  
0714201106 0.106228   65536 1000 3205.03 3203.41  
0714201106 0.551517   65536 1000 3202.87 3201.27  
0714201106 0.045490   65536 1000 3205.10 3203.47  
0714201106 0.477092   65536 1000 3205.28 3203.65  
0714201106 0.967527   65536 1000 3204.91 3203.22  
0714201106 0.414128   65536 1000 3205.22 3203.60  
0714201106 0.965537   65536 1000 3205.28 3203.60  
0714201106 0.375228   65536 1000 3204.66 3202.97  
0714201106 0.791527   65536 1000 3203.98 3202.37  
0714201106 0.319448   65536 1000 3205.03 3203.37  
0714201106 0.686031   65536 1000 3205.53 3203.85  
0714201106 0.135537   65536 1000 3205.16 3203.50  
0714201106 0.686875   65536 1000 3202.63 2165.21  
0714201106 0.063536   65536 1000 3205.10 3203.44  
0714201106 0.453276   65536 1000 2728.41 1706.81  
0714201106 0.911633   65536 1000 3204.85 3203.21  
0714201106 0.283328   65536 1000 3204.73 3203.08  
0714201106 0.754639   65536 1000 3204.91 3203.27  
0714201106 0.149205   65536 1000 3205.10 3203.47  
0714201106 0.697527   65536 1000 3203.92 3202.32  
0714201106 0.102147   65536 1000 3207.26 3205.44  
0714201106 0.532335   65536 1000 3205.47 3203.78  
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Table 26 — Sampling of TD18 Raw Test Data 

 

0714201106 0.530554   65536 1000 1887.00 1886.98 
0714201106 0.988534   65536 1000 1730.72 1730.72 
0714201106 0.383229   65536 1000 3206.24 3204.61 
0714201106 0.869228   65536 1000 3206.24 3204.58 
0714201106 0.276967   65536 1000 3206.38 3204.75 
0714201106 0.813975   65536 1000 3206.24 3204.56 
0714201106 0.261216   65536 1000 3206.17 3204.51 
0714201106 0.710624   65536 1000 1206.19 1206.19 
0714201106 0.171515   65536 1000 3206.31 3204.67 
0714201106 0.629222   65536 1000 3206.45 3204.76 
0714201106 0.042224   65536 1000 3206.17 3204.55 
0714201106 0.527228   65536 1000 3206.11 3204.45 
0714201106 0.898241   65536 1000 3205.97 3204.28 
0714201106 0.361816   65536 1000 3206.17 3204.49 
0714201106 0.820216   65536 1000 3206.52 3204.87 
0714201106 0.350225   65536 1000 3206.17 3204.47 
0714201106 0.877161   65536 1000 3205.97 3204.34 
0714201106 0.445205   65536 1000 3206.11 3204.45 
0714201106 0.938605   65536 1000 1701.57 1701.57 
0714201106 0.305242   65536 1000 3206.24 3204.61 
0714201106 0.726167   65536 1000 3204.73 3197.98 
0714201106 0.093256   65536 1000 3206.24 3204.57 
0714201106 0.461260   65536 1000 3206.11 3204.36 
0714201106 0.843026   65536 1000 2138.78 2138.75 
0714201106 0.189748   65536 1000 3204.80 3203.16 
0714201106 0.669289   65536 1000 3205.76 3204.07 
0714201106 0.115138   65536 1000 3206.17 3204.48 
0714201106 0.562282   65536 1000 3206.11 3204.43 
0714201106 0.972065   65536 1000 3205.28 3197.67 
0714201106 0.375242   65536 1000 3206.24 3204.53 
0714201106 0.853318   65536 1000 3206.11 3204.46 
0714201106 0.368227   65536 1000 3206.04 3204.36 
0714201106 0.737896   65536 1000 3198.84 3197.33 
0714201106 0.119207   65536 1000 3206.04 3204.35 
0714201106 0.532148   65536 1000 3206.24 3204.61 
0714201106 0.912224   65536 1000 3206.17 3204.49 
0714201106 0.481330   65536 1000 3203.09 3197.62 
0714201106 0.891216   65536 1000 3206.11 3204.40 
0714201106 0.337228   65536 1000 3206.11 3204.39 
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Table 27 — Sampling of TD30 Raw Test Data 

 

0714201106 0.524646   65536 1000 3193.89 1884.77  
0714201106 0.991458   65536 1000 3110.61 1728.73  
0714201106 0.426906   65536 1000 3199.08 3194.02  
0714201106 0.801497   65536 1000 3200.31 3198.51  
0714201106 0.239535   65536 1000 3200.45 3198.61  
0714201106 0.690697   65536 1000 3200.58 3198.79  
0714201106 0.143489   65536 1000 3200.51 3198.70  
0714201106 0.707965   65536 1000 3185.66 1274.11  
0714201106 0.210500   65536 1000 3200.65 3198.86  
0714201106 0.591458   65536 1000 3200.65 3198.84  
0714201106 0.092456   65536 1000 3200.45 3198.63  
0714201106 0.626259   65536 1000 3187.63 1838.63  
0714201106 0.102481   65536 1000 3200.58 3198.77  
0714201106 0.656687   65536 1000 3199.49 3190.17  
0714201106 0.106635   65536 1000 3199.69 3197.90  
0714201106 0.495810   65536 1000 3200.58 3198.77  
0714201106 0.947475   65536 1000 3200.65 3198.82  
0714201106 0.367142   65536 1000 3200.58 3198.77  
0714201106 0.942057   65536 1000 1701.12 1701.11  
0714201106 0.502477   65536 1000 3200.38 3198.56  
0714201106 0.888724   65536 1000 3199.01 2201.42  
0714201106 0.341469   65536 1000 3199.76 3197.98  
0714201106 0.838187   65536 1000 3199.01 2135.32  
0714201106 0.258691   65536 1000 3200.65 3198.84  
0714201106 0.713832   65536 1000 3199.83 3198.09  
0714201106 0.253916   65536 1000 3194.91 1910.23  
0714201106 0.730165   65536 1000 3200.58 3198.75  
0714201106 0.214758   65536 1000 3200.51 3198.70  
0714201106 0.707476   65536 1000 3200.45 3198.60  
0714201106 0.290457   65536 1000 3200.45 3198.69  
0714201106 0.822458   65536 1000 3200.24 3198.42  
0714201106 0.423476   65536 1000 3200.58 3198.84  
0714201106 0.956022   65536 1000 3200.17 3198.33  
0714201106 0.363948   65536 1000 3200.24 3198.41  
0714201106 0.854810   65536 1000 3200.45 3198.64  
0714201106 0.310500   65536 1000 3200.38 3198.54  
0714201106 0.722478   65536 1000 3200.58 3198.74  
0714201106 0.179676   65536 1000 3200.51 3198.68  
0714201106 0.624819   65536 1000 3200.38 3198.55  
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17.4 Test Data Analysis 
 
While this test was only for a short duration, the raw data confirms all systems began the 

ib_send_bw test within a second of each other but not at the precise microsecond. Further, it appears the 
first system, TD25, reached full bandwidth use within its first iteration cycle while TD18 and TD30 began 
at a lower bandwidth allocation but quickly settled into full use within the first or second iteration cycle. 
Table 28 contains the first three iteration cycles from TD25, TD18, and TD30. Two runs for each system 
are shown. Figure 44 shows the performance at startup and Fig. 45, Fig. 46, and Fig. 47 reflect the first 39 
iterations from each of the clients. In the data charts, the horizontal axis is time and the vertical axis is 
bandwidth. 

 
 
 

Table 28 — First Three Iteration Cycle Data 
 

TD25 Run 1 
0713201109 0.365101  65536 1000 3200.16 3198.55 
0713201109 0.755907  65536 1000 3204.91 3203.20 
0713201109 0.132535  65536 1000 3205.34 3203.68 
TD25 Run 2 
0714201106 0.609263  65536 1000 3207.08 3205.38 
0714201106 0.090296  65536 1000 3203.86 3202.24 
0714201106 0.454187  65536 1000 3204.85 3203.16 
 
TD18 Run 1 
0713201109 0.423747  65536 1000 2887.18 1720.69 
0713201109 0.890068  65536 1000 3206.17 3204.50 
0713201109 0.294175  65536 1000 3206.04 3204.35 
TD18 Run 2 
0714201106 0.530554  65536 1000 1887.00 1886.98 
0714201106 0.988534  65536 1000 1730.72 1730.72 
0714201106 0.383229  65536 1000 3206.24 3204.61 
 
TD30 Run 1 
0713201109 0.423264  65536 1000 1723.58 1723.56 
0713201109 0.801590  65536 1000 3200.38 3198.54 
0713201109 0.176824  65536 1000 3199.35 3197.55 
TD30 Run 2 
0714201106 0.524646  65536 1000 3193.89 1884.77 
0714201106 0.991458  65536 1000 3110.61 1728.73 
0714201106 0.426906  65536 1000 3199.08 3194.02 
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Fig. 44 — Startup comparison data 
 
 
 

 
 

Fig. 45 — TD25 test data 
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Fig. 46 — TD18 test data 
 
 
 

 
 

Fig. 47 — TD30 test data 
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17.5 Rerunning the Test Data Analysis 
 
The previous test demonstrated some problems with the Dell R310 servers, so the tests were 

executed again after some hardware changes. The Dell R310s were replaced with Dell R610s. Table 29 
and Fig. 48, Fig. 49, Fig. 50, and Fig. 51 report the test data results (horizontal axis is time, vertical is 
bandwidth). 

 
 
 

Table 29 — First Three Iteration Cycles Reevaluated 
 

TD25 Reevaluation Run 1 
393376 3203.56 
839052 3203.55 
322047 3203.33 

 
TD26 Reevaluation Run 1 

06376426 3198.97 
06811610 3204.34 
06294440 3204.70 

 
TD28 Reevaluation Run 1 

481924 3193.51 
957261 3204.43 
440251 3204.66 

 
 
 

 
 

Fig. 48 — Reevaluation of the startup comparison data 
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Fig. 49 — TD25 re-test data 
 
 
 

 
 

Fig. 50 — TD26 re-test data 
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Fig. 51 — TD28 re-test data 
 
 
 

17.6 Test Data Conclusion 
 
It appears that the R610, with its faster multi-threaded processor, has advantages for initial IB packet 

processing. But caution must be observed when analyzing this data, as pristine laboratory controls over 
system heat, hardware characteristics, power fluctuations, and external traffic such as SNMP and SSH 
sessions, are only a few factors that may contribute to performance. For example, the MSDPI clients were 
remotely accessed, which meant an SSH session was in progress. Also, IB uses IP/TCP to set up a QP 
transfer. This further delays IB when TCP connections are delayed due to system resource allocation 
issues. Although using a separate interface, system resources (CPU, memory, and PCIe bus) were still 
being used. Further, there was no way to accurately measure the impact of the InfiniBand switch on the 
test performance. For these tests, it was observed that approximately 10% of IB interface performance is 
impacted by these “other” resources. To obtain test data not affected by outside influences, systems 
outside the funding scope of this program would be required. For normal DoD/IC operational 
configurations for systems that do not have critical timing issues, these test results are more than 
adequate. 
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18 MSDPI ENGINEERED INTO A LIVECD DISTRIBUTION 
 

18.1 Linux LiveCD 
 
A LiveCD is a Linux custom-configured bootable CD or DVD which when booted runs a complete 

operating system without requiring a secondary storage device such as a hard drive. In this case, a Fedora 
15 (or 14) bootable DVD image (ISO format) contains the MSDPI system, the directory tree 
/usr/local/SIPCP, and several MSDPI XML configuration files.  

 
18.2 MSDPI LiveCD 

 
The reason for creating an MSDPI LiveCD is to have a test environment that has control of the 

operating environment, taking full advantage of the rich feature set of a Fedora 15/14 MSDPI 
environment yet still preserving the existing system’s previous operating system state. For example, a 
typical DoD Linux server runs a Red Hat 5.5 distribution specifically configured for a particular agency 
mission. Sometimes when debugging I/O hardware performance problems, the interface in question may 
require test configurations that are best implemented without interference from other synchronous running 
programs. This dedicates system resources, such as I/O and processor cycles, to the test program. Test 
scenarios can be executed without delays from other applications. Further, a LiveCD establishes the test 
tool has a highly mobile diagnostic utility, reducing deployment time. For example, the need to build 
multiple versions of MSDPI that are compatible with every version of Linux distribution is not required. 
Further, not every Linux distribution includes all the open source runtime libraries that MSDPI exploits. 
For example, Sofia-SIP is MSDPI’s core SIP processing system. While Fedora supports a native 
installation, other distributions do not include it, therefore requiring Sofia-SIP to be compiled for each of 
those distributions. Another advantage is the ability to keep the MSDPI system up to date with the latest 
releases not only of MSDPI changes but of the exploited open source libraries. Further, enhancements of 
newly developed technologies, such as the Bay Microsystems L2TPv3 test discussed in this report, are 
quickly integrated into the MSDPI system. Since MSDPI has been set up as a LiveCD, added security can 
easily be incorporated by locking down the distribution so that only MSDPI is accessible and further 
enhanced to allow only a particular test configuration to be performed. In so doing, not only is security 
improved for testing, but any user with no test experience can be instructed to boot the LiveCD, while the 
experienced tester tests and subsequently retrieves the resulting test data remotely, as discussed in Section 
15. 

 
18.3 MSDPI LiveCD Feature Sets 

 
MSDPI’s LiveCD current feature set includes the following: 
 
1. “perftest” “send_bw” test subsystem which performs bandwidth diagnostics between two or 

more IB hosts. 
2. Any shell run-able Linux command, for example, Netperf. 
 

18.4 How to Build an MSDPI LiveCD 
 
The following steps detail how an MSDPI bootable LiveCD is created, assuming the development 

environment is Fedora 14 (or 15) and the proper rpmbuild environment has been initialized. 
 

1. Create an rpm repository for the MSDPI system. This is required because the LiveCD process 
retrieves the MSDPI system from the repository. 
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a. Create a yum repository file named “msdpi.repos” and place it in the directory 
/etc/yum.repos.d/. Figure 52 illustrates the contents of the file.  

b. Create a repository directory and run the command: createrepo /path-to-your-msdpi-
repository. Typically, this path is within the http server (in this case Cherokee) directory 
tree, for example: /var/www/cherokee/msdpi-repos. 

 
2. Now create an MSDPI rpm file to be used by the LiveCD build process.  
 

a. Create rpmbuild specification files with the information detailed in Fig. 53 and Fig. 54.  
b. Place the specification files in the appropriate rpmbuild directory, ~/rpmbuild/SPECS. 
c. Place a copy of the MSDPI archive files in the appropriate rpmbuild directory, 

~/rpmbuild/SOURCES. 
 
3. The name of these files and the directories they archived must match the filename designation 

specified in the rpmbuild specification files. 
 

a. Run the command line sequence: rpmbuild -bb –target=`uname -m` ./[msdpi specification 
file].  

b. Copy the built rpm files to the MSDPI repository created in the above yum repository 
creation instructions (step 1). 

c. Recreate the repomd metadata file by reissuing step 1b from the yum creation process 
above. 

 
4. The last thing to do is build the LiveCD ISO image and burn onto a DVD or USB drive. Since 

the size of the ISO file is more than 640 MB, a DVD must be used. 
 

a. Create a kickstart file with the data shown in Fig. 55. 
b. Edit the kickstart file to reflect the interfaces and hostname of the target system. 
c. Issue the command to create the ISO image: livecd-creator --config=msdpi.ks --

fslabel=MSDPI –cache=/var/cache/live. 
d. Burn the ISO image MSDPI.iso to DVD using any installed DVD writer program (for 

example, GnomeBaker). Typically, by placing a blank DVD in the DVD writer, the 
default DVD writer program auto-loads. If a USB bootable LiveCD is being created, 
issue the command line sequence: livecd-iso-to-disk --format --reset-mbr MSDPI.iso 
/dev/[USB device]. 

 
 
 

[msdpi]  
name=local  
baseurl=http://localhost/msdpi-repos/  
enabled=1  
gpgcheck=0  

 
Fig. 52 — Example of the MSDPI repository file 
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Name:           msdpi 
Version:        30.06.11 
Release:        1%{?dist} 
Summary:    Multi-Service Domain Protecting Interface     
License:       GPL+ 
URL:            http://localhost/develop/SIPCONTROLPLANE 
Source0:        http://localhost/develop/SIPCONTROLPLANE/%{name}-%{version}.tar.gz 
# BuildRequires:   
# Requires:        
%description 
The MSDPI program, SIP Control Plane. 
%prep 
%setup -q 
%build 
%configure --prefix=/usr/local/SIPCP 
make %{?_smp_mflags} 
%install 
rm -rf $RPM_BUILD_ROOT 
# make install DESTDIR=$RPM_BUILD_ROOT 
mkdir -p $RPM_BUILD_ROOT/usr/local/SIPCP/bin 
cp %{_builddir}/%{name}-%{version}/src/msdpi $RPM_BUILD_ROOT/usr/local/SIPCP/bin 
%clean 
rm -rf $RPM_BUILD_ROOT 
%files 
%defattr(-,root,root,-) 
%doc 
/usr/local/SIPCP/bin/msdpi 
%changelog 

 
Fig. 53 — Example of the MSDPI rpmbuild specification file 
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Name:           msdpi-packages 
Version:        30.06.11 
Release:        1%{?dist} 
Summary:    Multi-Service Domain Protecting Interface Packages    
License:       GPL+ 
URL:            http://localhost/develop/SIPCONTROLPLANE 
Source0:        http://localhost/develop/SIPCONTROLPLANE/%{name}-%{version}.tar.gz 
# BuildRequires:   
# Requires:        
%description 
The “MSDPI program, SIP Control Plane packages includes those necessary files to build a complete LiveCD system 
For example, adding various configuration files:  ifcfg-eth?, ifcfg-ib?, openvpn config and key files. 
NOTE: Each of the LiveCDs are built to represent a specific system configuration to include the system name, 
interface parametrers (aka IP address), openvpn files, specific files in the etc/sysconfig directory. 
%prep 
%build 
%install 
rm -rf $RPM_BUILD_ROOT 
mkdir -p $RPM_BUILD_ROOT/usr/sbin 
mkdir -p $RPM_BUILD_ROOT/etc/rdma 
mkdir -p $RPM_BUILD_ROOT/etc/init.d 
mkdir -p $RPM_BUILD_ROOT/usr/local/sbin 
mkdir -p $RPM_BUILD_ROOT/usr/local/bin 
mkdir -p $RPM_BUILD_ROOT/usr/local/SIPCP 
cp -R /develop/LIVECD/SIPCP/* $RPM_BUILD_ROOT/usr/local/SIPCP 
cp -R /develop/LIVECD/ETC/rdma/* $RPM_BUILD_ROOT/etc/rdma 
cp /develop/LIVECD/ETC/init.d/rdma $RPM_BUILD_ROOT/etc/init.d/rdma 
cp /usr/sbin/opensm $RPM_BUILD_ROOT/usr/sbin/opensm 
%clean 
rm -rf $RPM_BUILD_ROOT 
%files 
%defattr(-,root,root,-) 
%doc 
/usr/local/SIPCP/bin/ib_clock_test 
/usr/local/SIPCP/bin/ib_rdma_bw 
/usr/local/SIPCP/bin/ib_rdma_lat 
/usr/local/SIPCP/bin/ib_read_bw 
/usr/local/SIPCP/bin/ib_read_lat 
/usr/local/SIPCP/bin/ib_send_bw 
/usr/local/SIPCP/bin/ib_send_lat 
/usr/local/SIPCP/bin/ib_write_bw 
/usr/local/SIPCP/bin/ib_write_bw_postlist 
/usr/local/SIPCP/bin/ib_write_lat 
/etc/init.d/rdma 
/etc/rdma/fixup-mtrr.awk 
/etc/rdma/mlx4.conf 
/etc/rdma/opensm.conf 
/etc/rdma/rdma.conf 
/etc/rdma/setup-mlx4.awk 
/usr/sbin/opensm 
/usr/local/SIPCP/sbin/netperf.sh 
/usr/local/SIPCP/bin/netperf 
/usr/local/SIPCP/bin/netserver 
/usr/local/SIPCP/bin/msdpi 
/usr/local/SIPCP/sbin/msdpiclientsh 
/usr/local/SIPCP/sbin/msdpish 
/usr/local/SIPCP/etc/SITE-A_server-only-ib_send_bw.xml 
%changelog 

 
Fig. 54 — Example of the MSDPI package rpmbuild specification file 
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%include /usr/share/spin-kickstarts/fedora-livecd-desktop.ks  
repo --name=local --baseurl=http://localhost/msdpi-repos/  
%packages  
msdpi-packages  
%end  
%post  
# FIXME: it’d be better to get this installed from a package  
cat > /etc/sysconfig/network-scripts/ifcfg-eth0 << EOF  
DEVICE=eth0  
#HWADDR=00:22:68:1E:E2:80  
ONBOOT=yes  
NM_CONTROLLED=yes  
IPADDR=10.128.112.6  
BOOTPROTO=none  
NETMASK=255.255.255.0  
TYPE=Ethernet  
GATEWAY=10.128.112.1  
IPV6INIT=yes  
USERCTL=yes  
PREFIX=24  
DNS1=10.1.1.1  
EOF  
cat > /etc/sysconfig/network << EOF  
NETWORKING=yes  
HOSTNAME=FARP.atd.net  
NTPSERVERARGS=iburst  
NOZEROCONF=yes  
EOF  
cat > /etc/sysconfig/vncservers << EOF  
VNCSERVERS=“50:msdpi-user”  
EOF  
%end  

 
Fig. 55 — Example of the MSDPI package LiveCD kickstart file 

 
 
 

19 WORK OUTSTANDING 
 
There are still many enhancements and improvements to be made to MSDPI, including the 

following. 
 
1. In the original FY11 project plan established by the sponsor, required network components were 

to be purchased by the sponsor and delivered to NRL so that certain tests could be completed. 
To date, the equipment has not been delivered, preventing NRL from conducting planned tests 
such as the following: 

a. IB-to-WAN scenario testing as it relates to DoD/IC network configurations. 
b. Synchronized IB timing tests between multiple end systems. 
c. File system over 40G IB interface network tests using the DoD-compliant OS, Red Hat 

5.5. NRL subscription licenses for Red Hat Server/Client software have expired, further 
impacting test execution. 
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2. Complete several IB test tool modifications to take full advantage of NRL’s enhanced perftest 
modifications. These IB test tool modifications were not scoped within the FY11 tasking but 
have since been determined to be of importance for inclusion in any further follow-on work. 

a. Apply “send_bw” program fixes to the other IB tool sets (read_bw, read_lat, write_bw, 
write_lat, rdma_bw, rdma_lat, send_lat). 

b. Modify the IB tool sets for threaded operation. 
c. Complete the integration of the rest of the IB tool sets within MSDPI. Currently only 

“send_bw” is fully integrated. 
d. Include other IP test tools so they are fully integrated into MSDPI (not as subsystem shell 

commands). For example and most important is the full integration of the Netperf tool 
set. Other examples include incorporating tools such as ping, modifying SIP SIMPLE 
MESSAGE messages as ping-like exchanges, and incorporating Test TCP (TTCP), which 
is a benchmarking tool to measure TCP network performance, and other tools such as 
traceroute. 

e. Rework the command line so shell commands can be run dynamically (currently shell 
commands are compile time inclusions to MSDPI). 

 
3. Complete SNMP processing to support basic MIB database exchanges and unique security 

features such as inter-domain exchanges. This will provide a solution for network product 
vendors, such as Anagran, who could exploit the MSDPI “Sandwich” within DoD/IC protected 
network configurations, thus seamlessly supporting product MIB inter-domain exchange. 
 

4. Complete the incorporation of MSDPI within the Bay Microsystems product line by providing 
assistance to Bay with the Buildroot process. 
 

5. Integrate the OpenFlow forwarding table process into MSDPI. This would provide the DoD/IC 
with a valuable full-featured and dynamically flexible network virtualization and simulation tool 
as well as a like encryption device development tool which does not exist today. It would also 
allow network encryption device and network component developers and test engineers to test 
and evaluate DoD/IC unique requirements without disrupting operational networks. Finally, it 
would provide a prototype reference for developers in meeting DoD/IC mission requirements. 

 
 

20 CONCLUSION 
 
The successful implementation of MSDPI prototypes provides solid proof of the many benefits this 

system has for the government. It provides an effective way to maintain the technological readiness of 
encryption device technology. It enhances the capabilities of existing information assurance systems. It 
provides a deployable mechanism for policy control between protected domains. It clearly demonstrates 
the ability to converge routing protocols, IA, and test sets into one control plane. Finally, the prototypes 
clearly demonstrate reduced costs and logistical management of DoD/IC operational encryption devices, 
test tool devices, and policy management devices. 
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